Reactive Nitrogen and Air Quality in India

Author(s):  
G. Beig ◽  
S. Maji ◽  
A.S. Panicker ◽  
S.K. Sahu
2011 ◽  
Vol 8 (6) ◽  
pp. 529 ◽  
Author(s):  
Shuzhong He ◽  
Zhongming Chen ◽  
Xuan Zhang

Environmental contextAlkyl nitrates are considered to be important intermediates in the atmospheric hydrocarbons–nitrogen oxides–ozone cycle, which significantly determines air quality and nitrogen exchange between the atmosphere and the Earth’s surfaces. The present laboratory study investigates reaction products of alkyl nitrates to elucidate their photochemical reaction mechanisms in the atmosphere. The results provide a better understanding of the role played by alkyl nitrates in the atmospheric environment. AbstractAlkyl nitrates (ANs) are important nitrogen-containing organic compounds and are usually considered to be temporary reservoirs of reactive nitrogen NOx (NO2 and NO) in the atmosphere, although their atmospheric fates are incompletely understood. Here a laboratory study of the gas-phase photolysis and OH-initiated reactions of methyl nitrate (CH3ONO2) and ethyl nitrate (C2H5ONO2), as models of atmospheric ANs, is reported with a focus on elucidating the detailed photochemical reaction mechanisms of ANs in the atmosphere. A series of intermediate and end products were well characterised for the first time from the photochemical reactions of methyl and ethyl nitrate conducted under simulated atmospheric conditions. Notably, for both the photolysis and OH-initiated reactions of CH3ONO2 and C2H5ONO2, unexpectedly high yields of HNO3 (photochemically non-reactive nitrogen) were found and also unexpectedly high yields of peroxyacyl nitrates (RC(O)OONO2, where R = H, CH3, CH3CH2,…) (reactive nitrogen) have been found as CH3C(O)OONO2 in the C2H5ONO2 reaction or proposed as HC(O)OONO2 in the CH3ONO2 reaction. Although the yields of HNO3 from the ANs under ambient conditions are likely variable and different from those obtained in the laboratory experiments reported here, the results imply that the ANs could potentially serve as a sink for reactive nitrogen in the atmosphere. The potential for this dual role of organic nitrates in the nitrogen cycle should be considered in the study of air quality and nitrogen exchange between the atmosphere and surface. Finally, an attempt was made to estimate the production of HNO3 and peroxyacyl nitrates derived from NOx by ANs as intermediates in the atmosphere.


2021 ◽  
Author(s):  
Nana wei ◽  
eloise a. marais ◽  
paul o. wennberg ◽  
hannah m. allen ◽  
john d. crounse ◽  
...  

<p>Reactive nitrogen in the upper troposphere (~8-12 km) impacts global climate, air quality and the oxidizing capacity of the whole troposphere. Here we use aircraft observations from instruments onboard the NASA DC8 aircraft for campaigns from 1997 (SONEX) to the recent ATom campaign (2016-2018) and the MOZAIC commercial aircraft campaign (2003-2005) to address uncertainties in the dynamics of reactive nitrogen (NO<sub>y</sub> = NO<sub>x</sub> + NO<sub>x</sub> reservoir compounds) in the global upper troposphere (UT). Our initial analysis of the DC8 aircraft observations is consistent with previous work in that PAN is the dominant NO<sub>y</sub> component (average: 43%; range: 40-60%), followed by NO<sub>x </sub>(on average, 21%), with smaller contributions (on average, 3.5-12.5%) from pernitric acid (HNO<sub>4</sub>), organonitrate (RONO<sub>2</sub>) and nitric acid (HNO<sub>3</sub>). We go on to compare multiyear mean NO<sub>y</sub> from MOZAIC to the combination of all NASA DC8 campaigns to determine whether we can build a near-global climatology of NO<sub>y</sub> and its components to compare to GEOS-Chem to assess our understanding of these very important atmospheric components.</p>


2018 ◽  
Vol 18 (17) ◽  
pp. 12991-13011 ◽  
Author(s):  
Rui Zhang ◽  
Tammy M. Thompson ◽  
Michael G. Barna ◽  
Jennifer L. Hand ◽  
Jill A. McMurray ◽  
...  

Abstract. Research has shown that excess reactive nitrogen (Nr) deposition in the Greater Yellowstone Area (GYA) of the United States has passed critical load (CL) thresholds and is adversely affecting sensitive ecosystems in this area. To better understand the sources causing excess Nr deposition, the Comprehensive Air Quality Model with Extensions (CAMx), using Western Air Quality Study (WAQS) emission and meteorology inputs, was used to simulate Nr deposition in the GYA. CAMx's Particulate Source Apportionment Technology (PSAT) was employed to estimate contributions from agriculture (AG), oil and gas (OG), fire (Fire), and other (Other) source sectors from 27 regions, including the model boundary conditions (BCs) to the simulated Nr for 2011. The BCs were outside the conterminous United States and thought to represent international anthropogenic and natural contributions. Emissions from the AG and Other source sectors are predominantly from reduced N and oxidized N compounds, respectively. The model evaluation revealed a systematic underestimation in ammonia (NH3) concentrations by 65 % and overestimation in nitric acid concentrations by 108 %. The measured inorganic N wet deposition at National Trends Network sites in the GYA was overestimated by 31 %–49 %, due at least partially to an overestimation of precipitation. These uncertainties appear to result in an overestimation of distant source regions including California and BCs and an underestimation of closer agricultural source regions including the Snake River valley. Due to these large uncertainties, the relative contributions from the modeled sources and their general patterns are the most reliable results. Source apportionment results showed that the AG sector was the single largest contributor to the GYA total Nr deposition, contributing 34 % on an annual basis. A total of 74 % of the AG contributions originated from the Idaho Snake River valley, with Wyoming, California, and northern Utah contributing another 7 %, 5 %, and 4 %, respectively. Contributions from the OG sector were small at about 1 % over the GYA, except in the southern Wind River Mountain Range during winter where they accounted for more than 10 %, with 46 % of these contributions coming from OG activities in Wyoming. Wild and prescribed fires contributed 18 % of the total Nr deposition, with fires within the GYA having the highest impact. The Other source category was the largest winter contributor (44 %) with high contributions from California, Wyoming, and northern Utah.


2012 ◽  
Vol 12 (2) ◽  
pp. 6145-6183 ◽  
Author(s):  
G. Sarwar ◽  
H. Simon ◽  
P. Bhave ◽  
G. Yarwood

Abstract. The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) has typically been modeled as only producing nitric acid. However, recent field studies have confirmed that the presence of particulate chloride alters the reaction product to produce nitryl chloride (ClNO2) which undergoes photolysis to generate chlorine atoms and nitrogen dioxide (NO2). Both chlorine and NO2 affect atmospheric chemistry and air quality. We present an updated gas-phase chlorine mechanism that can be combined with the Carbon Bond 05 mechanism and incorporate the combined mechanism into the Community Multiscale Air Quality modeling system. We then update the current model treatment of heterogeneous hydrolysis of N2O5 to include ClNO2 as a product. The model, in combination with a comprehensive inventory of chlorine compounds, reactive nitrogen, particulate matter, and organic compounds, is used to evaluate the impact of the heterogeneous ClNO2 production on air quality across the United States for the months of February and September in 2006. The heterogeneous production increases ClNO2 in coastal as well as many in-land areas in the United States. Particulate chloride derived from sea-salts, anthropogenic sources, and forest fires activates the heterogeneous production of ClNO2. With current estimates of tropospheric emissions burden, it modestly enhances monthly mean 8-h ozone (up to 1–2 ppbv or 3–4%) but causes large increases (up to 13 ppbv) in isolated episodes. It also substantially reduce the mean total nitrate by up to 0.8–2.0 μg m−3 or 11–21%. Modeled ClNO2 accounts for up to 3–4% of the monthly mean total reactive nitrogen. Sensitivity results of the model suggest that ClNO2 formation is limited more by the presence of particulate chloride than by the abundance of N2O5.


2020 ◽  
Vol 20 (17) ◽  
pp. 10587-10610
Author(s):  
Baozhu Ge ◽  
Syuichi Itahashi ◽  
Keiichi Sato ◽  
Danhui Xu ◽  
Junhua Wang ◽  
...  

Abstract. Atmospheric nitrogen deposition in China has attracted public attention in recent years due to the increasing anthropogenic emission of reactive nitrogen (Nr) and its impacts on the terrestrial and aquatic ecosystems. However, limited long-term and multisite measurements have restrained the understanding of the mechanism of the Nr deposition and the chemical transport model (CTM) improvement. In this study, the performance of the simulated wet and dry deposition for different Nr species, i.e., particulate NO3- and NH4+, gaseous NOx, HNO3 and NH3 have been conducted using the framework of Model Inter-Comparison Study for Asia (MICS-Asia) phase III. A total of nine models, including five Weather Research and Forecasting models coupled with the Community Multiscale Air Quality (WRF-CMAQ) models, two self-developed regional models, a global model and a Regional Atmospheric Modeling System coupled with the Community Multiscale Air Quality (RAMS-CMAQ) model have been selected for the comparison. For wet deposition, observation data from 83 measurement sites from the East Asia Acid Deposition Monitoring Network (EANET), Chinese Ecosystem Research Network (CERN), China Agricultural University Deposition Network (CAUDN), National Acid Deposition Monitoring Network (NADMN) and Department of Ecological Environment (DEE) of China have been collected and normalized for comparison with model results. In general, most models show the consistent spatial and temporal variation of both oxidized N (Nox) and reduced N (Nrd) wet deposition in China, with the normalized mean error (NME) at around 50 %, which is lower than the value of 70 % based on EANET observation over Asia. Both the ratio of wet or dry deposition to the total inorganic N (TIN) deposition and the ratios of TIN to their emissions have shown consistent results with the Nationwide Nitrogen Deposition Monitoring Network (NNDMN) estimates. The performance of ensemble results (ENMs) was further assessed with satellite measurements. In different regions of China, the results show that the simulated Nox wet deposition was overestimated in northeastern China (NE) but underestimated in the south of China, namely southeastern (SE) and southwestern (SW) China, while the Nrd wet deposition was underestimated in all regions by all models. The deposition of Nox has larger uncertainties than the Nrd, especially in northern China (NC), indicating the chemical reaction process is one of the most important factors affecting the model performance. Compared to the critical load (CL) value, the Nr deposition in NC, SE and SW reached or exceeded reported CL values and resulted in serious ecological impacts. The control of Nrd in NC and SW and Nox in SE would be an effective mitigation measure for TIN deposition in these regions. The Nr deposition in the Tibetan Plateau (TP) with a high ratio of TIN ∕ emission (∼3.0), indicates a significant transmission from outside. Efforts to reduce these transmissions ought to be paramount due the climatic importance of the Tibetan region to the sensitive ecosystems throughout China.


2012 ◽  
Vol 12 (14) ◽  
pp. 6455-6473 ◽  
Author(s):  
G. Sarwar ◽  
H. Simon ◽  
P. Bhave ◽  
G. Yarwood

Abstract. The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) has typically been modeled as only producing nitric acid. However, recent field studies have confirmed that the presence of particulate chloride alters the reaction product to produce nitryl chloride (ClNO2) which undergoes photolysis to generate chlorine atoms and nitrogen dioxide (NO2). Both chlorine and NO2 affect atmospheric chemistry and air quality. We present an updated gas-phase chlorine mechanism that can be combined with the Carbon Bond 05 mechanism and incorporate the combined mechanism into the Community Multiscale Air Quality (CMAQ) modeling system. We then update the current model treatment of heterogeneous hydrolysis of N2O5 to include ClNO2 as a product. The model, in combination with a comprehensive inventory of chlorine compounds, reactive nitrogen, particulate matter, and organic compounds, is used to evaluate the impact of the heterogeneous ClNO2 production on air quality across the United States for the months of February and September in 2006. The heterogeneous production increases ClNO2 in coastal as well as many in-land areas in the United States. Particulate chloride derived from sea-salts, anthropogenic sources, and forest fires activates the heterogeneous production of ClNO2. With current estimates of tropospheric emissions, it modestly enhances monthly mean 8-h ozone (up to 1–2 ppbv or 3–4%) but causes large increases (up to 13 ppbv) in isolated episodes. This chemistry also substantially reduces the mean total nitrate by up to 0.8–2.0 μg m−3 or 11–21%. Modeled ClNO2 accounts for up to 6% of the monthly mean total reactive nitrogen. Sensitivity results of the model suggest that heterogeneous production of ClNO2 can further increase O3 and reduce TNO3 if elevated particulate-chloride levels are present in the atmosphere.


Author(s):  
J. B. Moran ◽  
J. L. Miller

The Clean Air Act Amendments of 1970 provide the basis for a dramatic change in Federal air quality programs. The Act establishes new standards for motor vehicles and requires EPA to establish national ambient air quality standards, standards of performance for new stationary sources of pollution, and standards for stationary sources emitting hazardous substances. Further, it establishes procedures which allow states to set emission standards for existing sources in order to achieve national ambient air quality standards. The Act also permits the Administrator of EPA to register fuels and fuel additives and to regulate the use of motor vehicle fuels or fuel additives which pose a hazard to public health or welfare.National air quality standards for particulate matter have been established. Asbestos, mercury, and beryllium have been designated as hazardous air pollutants for which Federal emission standards have been proposed.


ASHA Leader ◽  
2013 ◽  
Vol 18 (2) ◽  
pp. 34-34
Keyword(s):  

Air Quality May Affect Infants' Brains


Sign in / Sign up

Export Citation Format

Share Document