Chaotic Path Planning for a Two-Link Flexible Robot Manipulator Using a Composite Control Technique

Author(s):  
Kshetrimayum Lochan ◽  
Jay Prakash Singh ◽  
Binoy Krishna Roy ◽  
Bidyadhar Subudhi
Author(s):  
Eming Chen

Abstract In the flexible robot force control situations, if there exists a discontinuity between the robot tip sensor and the work-piece, the robot contact process becomes a nonlinear system control problem. The control tasks require the robot hand to switch from free motion control to contact motion control. The inevitable high impact force tends to let the system become unstable. The purpose of this paper is to investigate the control of the manipulator during this process. In this paper, dynamic models of the flexible link manipulator in both non-contacted and contacted modes are first derived. Due to the fact that the arm vibration shape functions are changed between the two modes, a transform matrix will be used to transform the controlled state variables, such as generalized position and velocity. A nonlinear sliding mode control technique has been implemented in an attempt to extinguish the chatter phenomenon and settle quickly to the desired setpoint.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092004
Author(s):  
Yong-Lin Kuo ◽  
Chun-Chen Lin ◽  
Zheng-Ting Lin

This article presents a dual-optimization trajectory planning algorithm, which consists of the optimal path planning and the optimal motion profile planning for robot manipulators, where the path planning is based on parametric curves. In path planning, a virtual-knot interpolation is proposed for the paths required to pass through all control points, so the common curves, such as Bézier curves and B-splines, can be incorporated into it. Besides, an optimal B-spline is proposed to generate a smoother and shorter path, and this scheme is especially suitable for closed paths. In motion profile planning, a generalized formulation of time-optimal velocity profiles is proposed, which can be implemented to any types of motion profiles with equality and inequality constraints. Also, a multisegment cubic velocity profile is proposed by solving a multiobjective optimization problem. Furthermore, a case study of a dispensing robot is investigated through the proposed dual-optimization algorithm applied to numerical simulations and experimental work.


Sign in / Sign up

Export Citation Format

Share Document