Path Planning for Robot Manipulator based on Obstacle-Guided Path Refinement

Author(s):  
Mohamed G. B. Atia ◽  
Omar Salah ◽  
Ahmed Fouly
2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092004
Author(s):  
Yong-Lin Kuo ◽  
Chun-Chen Lin ◽  
Zheng-Ting Lin

This article presents a dual-optimization trajectory planning algorithm, which consists of the optimal path planning and the optimal motion profile planning for robot manipulators, where the path planning is based on parametric curves. In path planning, a virtual-knot interpolation is proposed for the paths required to pass through all control points, so the common curves, such as Bézier curves and B-splines, can be incorporated into it. Besides, an optimal B-spline is proposed to generate a smoother and shorter path, and this scheme is especially suitable for closed paths. In motion profile planning, a generalized formulation of time-optimal velocity profiles is proposed, which can be implemented to any types of motion profiles with equality and inequality constraints. Also, a multisegment cubic velocity profile is proposed by solving a multiobjective optimization problem. Furthermore, a case study of a dispensing robot is investigated through the proposed dual-optimization algorithm applied to numerical simulations and experimental work.


Author(s):  
Qilong Yuan ◽  
I-Ming Chen ◽  
Teguh Santoso Lembono

Purpose Taping, covering objects with masking tapes, is a common process before conducting surface treatments such as plasma spraying and painting. Manual taping is tedious and takes a lot of effort of the workers. This paper aims to introduce an automatic agile robotic system and corresponding algorithm to do the surface taping. Design/methodology/approach The taping process is a special process which requires correct tape orientation and proper allocation of the masking tape for the coverage. This paper discusses on the design of the novel automatic system consisting of a robot manipulator, a rotating platform, a 3D scanner and a specially designed novel taping end-effectors. Meanwhile, the taping path planning to cover the region of interests is introduced. Findings Currently, cylindrical and freeform surfaces have been tested. With improvements on new sets of taping tools and more detailed taping method, taping of general surfaces can be conducted using such system in future. Originality/value The introduced taping path planning method is a novel method first talking about the mathematical model of the taping process. Such taping solution with the taping tool and the taping methodology can be combined as a very useful and practical taping package to replace the work of human in such tedious and time-consuming works.


2019 ◽  
Vol 12 (1) ◽  
pp. 56-65
Author(s):  
Ali N. Abdulnabi

This paper presents a collision-free path planning approaches based on Bézier curve and A-star algorithm for robot manipulator system. The main problem of this work is to finding a feasible collision path planning from initial point to final point to transport the robot arm from the preliminary to the very last within the presence of obstacles, a sequence of joint angles alongside the path have to be determined. To solve this problem several algorithms have been presented among which it can be mention such as Bug algorithms, A-Star algorithms, potential field algorithms, Bézier curve algorithm and intelligent algorithms. In this paper obstacle avoidance algorithms were proposed Bézier and A-Star algorithms, through theoretical studies and simulations with several different cases, it's found verify the effectiveness of the methods suggested. It's founded the Bézier algorithm is smoothing accurate, and effective as compare with the A-star algorithm, but A-star is near to shortest and optimal path to free collision avoidance. The time taken and the elapsed time to traverse from its starting position and to reach the goal are recorded the tabulated results show that the elapsed time with different cases to traverse from the start location to destination using A-star Algorithm is much less as compared to the time taken by the robot using Bézier Algorithm to trace the same path. The robot used was the Lab-Volt of 5DOF Servo Robot System Model 5250 (RoboCIM5250)


2019 ◽  
Vol 9 (10) ◽  
pp. 2033 ◽  
Author(s):  
Wanjin Guo ◽  
Ruifeng Li ◽  
Yaguang Zhu ◽  
Tong Yang ◽  
Rui Qin ◽  
...  

Industrial robotics is a continuously developing domain, as industrial robots have demonstrated to possess benefits with regard to robotic automation solutions in the industrial automation field. In this article, a new robotic deburring methodology for tool path planning and process parameter control is presented for a newly developed five-degree-of-freedom hybrid robot manipulator. A hybrid robot manipulator with dexterous manipulation and two experimental platforms of robot manipulators are presented. A robotic deburring tool path planning method is proposed for the robotic deburring tool position and orientation planning and the robotic layered deburring planning. Also, a robotic deburring process parameter control method is proposed based on fuzzy control. Furthermore, a dexterous manipulation verification experiment is conducted to demonstrate the dexterous manipulation and the orientation reachability of the robot manipulator. Additionally, two robotic deburring experiments are conducted to verify the effectiveness of the two proposed methods and demonstrate the highly efficient and dexterous manipulation and deburring capacity of the robot manipulator.


Sign in / Sign up

Export Citation Format

Share Document