Theory of simultaneous mass transfer and chemical reactions, with numerical solutions

Author(s):  
Bertram K.C. Chan
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Kh. Abdul Maleque

A local similarity solution of unsteady MHD natural convection heat and mass transfer boundary layer flow past a flat porous plate within the presence of thermal radiation is investigated. The effects of exothermic and endothermic chemical reactions with Arrhenius activation energy on the velocity, temperature, and concentration are also studied in this paper. The governing partial differential equations are reduced to ordinary differential equations by introducing locally similarity transformation (Maleque (2010)). Numerical solutions to the reduced nonlinear similarity equations are then obtained by adopting Runge-Kutta and shooting methods using the Nachtsheim-Swigert iteration technique. The results of the numerical solution are obtained for both steady and unsteady cases then presented graphically in the form of velocity, temperature, and concentration profiles. Comparison has been made for steady flow () and shows excellent agreement with Bestman (1990), hence encouragement for the use of the present computations.


2020 ◽  
Vol 17 ◽  
pp. 50-63
Author(s):  
N. T. M. Eldabe ◽  
Ahmed Refaie Ali ◽  
Gamil Ali Shalaby

A theoretical study has been developed to investigate the influence of thermophoresis and couple stresses on the steady flow of non-Newtonian fluid with free convective heat and mass transfer over a channel bounded by two permeable plates. The considered non-Newtonian fluid follows a viscoelastic model. The problem is modulated mathematically by a system of non-linear differential equations pertaining to describe the continuity, momentum, energy, and concentration. These equations involve the effects of viscous dissipation and chemical reaction. The numerical solutions of the dimensionless equations are found as a function of the physical parameters of this problem. The numerical formulas of the velocity (u), temperature Φ and concentration Θ as well as skin friction coefficient T*, Nusselt number(Nu) and Sherwood number(Sh) are computed. The physical parameter's effects of the problem on these formulas are described and illustrated graphically through some figures and tables. It is observed that any increase in the thermophoretic parameter T leads to reduce in velocity profiles as well as concentration layers. In contrast, the velocity increases with increasing the couple stresses inverse parameter.


1989 ◽  
Vol 44 (10) ◽  
pp. 2295-2310 ◽  
Author(s):  
G.F. Versteeg ◽  
J.A.M. Kuipers ◽  
F.P.H. Van Beckum ◽  
W.P.M. Van Swaaij

2017 ◽  
Vol 377 ◽  
pp. 111-126 ◽  
Author(s):  
C. Sulochana ◽  
G.P Ashwinkumar ◽  
Naramgari Sandeep

In this study, we investigated the 2D MHD flow of a dissipative Maxwell nanofluid past an elongated sheet with uneven heat source/sink, Brownian moment and thermophoresis effects. The flow governing PDEs are transmuted into nonlinear ODEs adopting the suitable similarity transmissions. Further, the RK-4 technique is employed to acquire the numerical solutions. The impact of pertinent parameters such as thermal radiation, frictional heating, irregular heat source/sink, biot number, Brownian moment and thermophoresis on the flow quantities such as velocity, thermal and concentration fields likewise friction factor, heat and mass transfer rates are bestowed with the succour of graphs and tables. Dual nature is witnessed for Newtonian and non-Newtonian fluid cases. It is noticed that the heat and mass transfer rate in Newtonian fluid larger as compared with non-Newtonian fluid.


Sign in / Sign up

Export Citation Format

Share Document