Endocrine Regulation of Brown and Beige Adipose Tissue

Author(s):  
Ariana Vargas-Castillo ◽  
Nimbe Torres ◽  
Armando R. Tovar
Bionatura ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 879-882
Author(s):  
Francisco Santacruz-Hidalgo ◽  
Eliana Viscarra-Sanchez

Brown adipose tissue is one of the principal generators of heat in the body; due to the activation of many hormones and receptors, it takes a fundamental role in thermogenesis. However recent studies have proved that this is not its only function. Brown adipose tissue could also act as an endocrine organ, which means that it releases chemical substances to the blood and regulate some activities in the organism. This cell communication process is momentous, since allowing cells to exchange physicochemical information with the environment and other cells in the body could be a relevant field of study in treatments of obesity, diabetes and other diseases related with body weight. This paper offers an overview of different transcriptional factors, endocrine regulation and therapeutic applications of the brown fat tissue, and also the distinctions that it has with white adipose tissue and beige adipose tissue.


2016 ◽  
Vol 231 (3) ◽  
pp. R77-R99 ◽  
Author(s):  
Liping Luo ◽  
Meilian Liu

Adipose tissue plays a central role in regulating whole-body energy and glucose homeostasis through its subtle functions at both organ and systemic levels. On one hand, adipose tissue stores energy in the form of lipid and controls the lipid mobilization and distribution in the body. On the other hand, adipose tissue acts as an endocrine organ and produces numerous bioactive factors such as adipokines that communicate with other organs and modulate a range of metabolic pathways. Moreover, brown and beige adipose tissue burn lipid by dissipating energy in the form of heat to maintain euthermia, and have been considered as a new way to counteract obesity. Therefore, adipose tissue dysfunction plays a prominent role in the development of obesity and its related disorders such as insulin resistance, cardiovascular disease, diabetes, depression and cancer. In this review, we will summarize the recent findings of adipose tissue in the control of metabolism, focusing on its endocrine and thermogenic function.


2019 ◽  
Vol 10 ◽  
Author(s):  
Elena Zoico ◽  
Sofia Rubele ◽  
Annamaria De Caro ◽  
Nicole Nori ◽  
Gloria Mazzali ◽  
...  

Neonatology ◽  
1993 ◽  
Vol 64 (2-3) ◽  
pp. 116-126 ◽  
Author(s):  
D.B. Hausman ◽  
G.J. Hausman ◽  
R.J. Martin

2014 ◽  
Vol 222 (2) ◽  
pp. R61-R73 ◽  
Author(s):  
Ynuk Bossé

Asthma is a prevalent respiratory disorder triggered by a variety of inhaled environmental factors, such as allergens, viruses, and pollutants. Asthma is characterized by an elevated activation of the smooth muscle surrounding the airways, as well as a propensity of the airways to narrow excessively in response to a spasmogen (i.e. contractile agonist), a feature called airway hyperresponsiveness. The level of airway smooth muscle (ASM) activation is putatively controlled by mediators released in its vicinity. In asthma, many mediators that affect ASM contractility originate from inflammatory cells that are mobilized into the airways, such as eosinophils. However, mounting evidence indicates that mediators released by remote organs can also influence the level of activation of ASM, as well as its level of responsiveness to spasmogens and relaxant agonists. These remote mediators are transported through circulating blood to act either directly on ASM or indirectly via the nervous system by tuning the level of cholinergic activation of ASM. Indeed, mediators generated from diverse organs, including the adrenals, pancreas, adipose tissue, gonads, heart, intestines, and stomach, affect the contractility of ASM. Together, these results suggest that, apart from a paracrine mode of regulation, ASM is subjected to an endocrine mode of regulation. The results also imply that defects in organs other than the lungs can contribute to asthma symptoms and severity. In this review, I suggest that the endocrine mode of regulation of ASM contractility is overlooked.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1129 ◽  
Author(s):  
Michael E. Symonds ◽  
Peter Aldiss ◽  
Mark Pope ◽  
Helen Budge

Brown adipose tissue (BAT) possesses a unique uncoupling protein (UCP1) which, when activated, enables the rapid generation of heat and the oxidation of lipids or glucose or both. It is present in small amounts (~15–350 mL) in adult humans. UCP1 is rapidly activated at birth and is essential in preventing hypothermia in newborns, who rapidly generate large amounts of heat through non-shivering thermogenesis. Since the “re-discovery” of BAT in adult humans about 10 years ago, there has been an exceptional amount of research interest. This has been accompanied by the establishment of beige fat, characterised as discrete areas of UCP1-containing cells dispersed within white adipocytes. Typically, the amount of UCP1 in these depots is around 10% of the amount found in classic BAT. The abundance of brown/beige fat is reduced with obesity, and the challenge is to prevent its loss with ageing or to reactivate existing depots or both. This is difficult, as the current gold standard for assessing BAT function in humans measures radio-labelled glucose uptake in the fasted state and is usually dependent on cold exposure and the same subject can be found to exhibit both positive and negative scans with repeated scanning. Rodent studies have identified multiple pathways that may modulate brown/beige fat function, but their direct relevance to humans is constrained, as these studies typically are undertaken in cool-adapted animals. BAT remains a challenging organ to study in humans and is able to swiftly adapt to changes in the thermal environment and thus enable rapid changes in heat production and glucose oxidation.


2018 ◽  
Vol 141 (4) ◽  
pp. 930-940 ◽  
Author(s):  
Junrong Cai ◽  
Bin Li ◽  
Jing Wang ◽  
Kaiyang Liu ◽  
Yuteng Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document