scholarly journals Endocrine regulation of airway contractility is overlooked

2014 ◽  
Vol 222 (2) ◽  
pp. R61-R73 ◽  
Author(s):  
Ynuk Bossé

Asthma is a prevalent respiratory disorder triggered by a variety of inhaled environmental factors, such as allergens, viruses, and pollutants. Asthma is characterized by an elevated activation of the smooth muscle surrounding the airways, as well as a propensity of the airways to narrow excessively in response to a spasmogen (i.e. contractile agonist), a feature called airway hyperresponsiveness. The level of airway smooth muscle (ASM) activation is putatively controlled by mediators released in its vicinity. In asthma, many mediators that affect ASM contractility originate from inflammatory cells that are mobilized into the airways, such as eosinophils. However, mounting evidence indicates that mediators released by remote organs can also influence the level of activation of ASM, as well as its level of responsiveness to spasmogens and relaxant agonists. These remote mediators are transported through circulating blood to act either directly on ASM or indirectly via the nervous system by tuning the level of cholinergic activation of ASM. Indeed, mediators generated from diverse organs, including the adrenals, pancreas, adipose tissue, gonads, heart, intestines, and stomach, affect the contractility of ASM. Together, these results suggest that, apart from a paracrine mode of regulation, ASM is subjected to an endocrine mode of regulation. The results also imply that defects in organs other than the lungs can contribute to asthma symptoms and severity. In this review, I suggest that the endocrine mode of regulation of ASM contractility is overlooked.

2001 ◽  
Vol 125 (2) ◽  
pp. 264-266
Author(s):  
Satish Krishnamurthy ◽  
Stephen Kent Powers ◽  
Javad Towfighi

Abstract Primitive neuroectodermal tumors (PNETs) of the central nervous system are uncommon embryonal neoplasms, rarely occurring in adults. Differentiation into specific mesenchymal tissues, such as cartilage, bone, skeletal muscle, smooth muscle, or adipose tissue, is rare. We report a case of a 51-year-old woman with a PNET of cerebrum that showed extensive mature adipose tissue differentiation. This is the second case, to our knowledge, of PNET of cerebrum with adipose tissue elements that has been described.


2015 ◽  
Vol 309 (7) ◽  
pp. L736-L746 ◽  
Author(s):  
David I. Kasahara ◽  
Joel A. Mathews ◽  
Chan Y. Park ◽  
Youngji Cho ◽  
Gabrielle Hunt ◽  
...  

Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1+/−, and ROCK2+/− mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2+/− mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2+/− mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1+/− but not ROCK2+/− mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1+/− or ROCK2+/− mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1's role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xin Peng ◽  
Yi Wu ◽  
Xiao Kong ◽  
Yunxiu Chen ◽  
Yonglu Tian ◽  
...  

Our previous study showed that neonatal S. pneumoniae infection aggravated airway inflammation and airway hyperresponsiveness (AHR) in an OVA-induced allergic asthma model. As airway smooth muscle (ASM) plays a pivotal role in AHR development, we aim to investigate the effects of neonatal S. pneumoniae pneumonia on ASM structure and AHR development. Non-lethal neonatal pneumonia was established by intranasally infecting 1-week-old BALB/C mice with the S. pneumoniae strain D39. Five weeks after infection, the lungs were collected to assess the levels of α-SMA and the contractile proteins of ASM. Our results indicate that neonatal S. pneumoniae pneumonia significantly increased adulthood lung α-SMA and SMMHC proteins production and aggravated airway inflammatory cells infiltration and cytokines release. In addition, the neonatal S. pneumoniae pneumonia group had significantly higher Penh values compared to the uninfected controls. These data suggest that neonatal S. pneumoniae pneumonia promoted an aberrant ASM phenotype and AHR development in mice model.


2007 ◽  
Vol 85 (1) ◽  
pp. 133-140 ◽  
Author(s):  
Fulvio R. Gil ◽  
Anne-Marie Lauzon

Asthma is a respiratory disorder characterized by airway inflammation and hyperresponsiveness associated with reversible airway obstruction. The relative contributions of airway hyperresponsiveness and inflammation are still debated, but ultimately, airway narrowing mediated by airway smooth muscle contraction is the final pathway to asthma. Considerable effort has been devoted towards identifying the factors that lead to the airway smooth muscle hypercontractility observed in asthma, and this will be the focus of this review. Airway remodeling has been observed in severe and fatal asthma. However, it is unclear whether remodeling plays a protective role or worsens airway responsiveness. Smooth muscle plasticity is a mechanism likely implicated in asthma, whereby contractile filament rearrangements lead to maximal force production, independent of muscle length. Increased smooth muscle rate of shortening via altered signaling pathways or altered contractile protein expression has been demonstrated in asthma and in numerous models of airway hyperresponsiveness. Increased rate of shortening is implicated in counteracting the relaxing effect of tidal breathing and deep inspirations, thereby creating a contracted airway smooth muscle steady-state. Further studies are therefore required to understand the numerous mechanisms leading to the airway hyperresponsiveness observed in asthma as well as their multiple interactions.


2020 ◽  
Vol 134 (18) ◽  
pp. 2447-2451
Author(s):  
Anissa Viveiros ◽  
Gavin Y. Oudit

Abstract The global prevalence of obesity has been rising at an alarming rate, accompanied by an increase in both childhood and maternal obesity. The concept of metabolic programming is highly topical, and in this context, describes a predisposition of offspring of obese mothers to the development of obesity independent of environmental factors. Research published in this issue of Clinical Science conducted by Litzenburger and colleagues (Clin. Sci. (Lond.) (2020) 134, 921–939) have identified sex-dependent differences in metabolic programming and identify putative signaling pathways involved in the differential phenotype of adipose tissue between males and females. Delineating the distinction between metabolically healthy and unhealthy obesity is a topic of emerging interest, and the precise nature of adipocytes are key to pathogenesis, independent of adipose tissue volume.


2019 ◽  
Vol 20 (6) ◽  
pp. 614-629 ◽  
Author(s):  
Eglantina Idrizaj ◽  
Rachele Garella ◽  
Roberta Squecco ◽  
Maria Caterina Baccari

The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nick J. Spencer ◽  
Lee Travis ◽  
Lukasz Wiklendt ◽  
Marcello Costa ◽  
Timothy J. Hibberd ◽  
...  

AbstractHow the Enteric Nervous System (ENS) coordinates propulsion of content along the gastrointestinal (GI)-tract has been a major unresolved issue. We reveal a mechanism that explains how ENS activity underlies propulsion of content along the colon. We used a recently developed high-resolution video imaging approach with concurrent electrophysiological recordings from smooth muscle, during fluid propulsion. Recordings showed pulsatile firing of excitatory and inhibitory neuromuscular inputs not only in proximal colon, but also distal colon, long before the propagating contraction invades the distal region. During propulsion, wavelet analysis revealed increased coherence at ~2 Hz over large distances between the proximal and distal regions. Therefore, during propulsion, synchronous firing of descending inhibitory nerve pathways over long ranges aborally acts to suppress smooth muscle from contracting, counteracting the excitatory nerve pathways over this same region of colon. This delays muscle contraction downstream, ahead of the advancing contraction. The mechanism identified is more complex than expected and vastly different from fluid propulsion along other hollow smooth muscle organs; like lymphatic vessels, portal vein, or ureters, that evolved without intrinsic neurons.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1485
Author(s):  
Adrian Sowka ◽  
Pawel Dobrzyn

Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin’s structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.


2021 ◽  
Vol 22 (4) ◽  
pp. 1587
Author(s):  
Nuri Song ◽  
Da Yeon Jeong ◽  
Thai Hien Tu ◽  
Byong Seo Park ◽  
Hye Rim Yang ◽  
...  

Adiponectin, an adipose tissue-derived hormone, plays integral roles in lipid and glucose metabolism in peripheral tissues, such as the skeletal muscle, adipose tissue, and liver. Moreover, it has also been shown to have an impact on metabolic processes in the central nervous system. Astrocytes comprise the most abundant cell type in the central nervous system and actively participate in metabolic processes between blood vessels and neurons. However, the ability of adiponectin to control nutrient metabolism in astrocytes has not yet been fully elucidated. In this study, we investigated the effects of adiponectin on multiple metabolic processes in hypothalamic astrocytes. Adiponectin enhanced glucose uptake, glycolytic processes and fatty acid oxidation in cultured primary hypothalamic astrocytes. In line with these findings, we also found that adiponectin treatment effectively enhanced synthesis and release of monocarboxylates. Overall, these data suggested that adiponectin triggers catabolic processes in astrocytes, thereby enhancing nutrient availability in the hypothalamus.


Sign in / Sign up

Export Citation Format

Share Document