COMC IV: Organometallic Receptors for Charged and Neutral Guest Species

Author(s):  
Robert Hein ◽  
Paul D. Beer
Keyword(s):  
RSC Advances ◽  
2021 ◽  
Vol 11 (44) ◽  
pp. 27432-27442
Author(s):  
Lina Wang ◽  
Richard Malpass-Evans ◽  
Mariolino Carta ◽  
Neil B. McKeown ◽  
Shaun B. Reeksting ◽  
...  

Microporous polymer materials based on molecularly “stiff” structures provide intrinsic microporosity, typical micropore sizes of 0.5 nm to 1.5 nm, and the ability to bind guest species.


2000 ◽  
Vol 55 (3-4) ◽  
pp. 299-316 ◽  
Author(s):  
Dagmar Henschel ◽  
Karna Wijaya ◽  
Oliver Moers ◽  
Armand Blaschette ◽  
Peter G. Jones

Abstract In a study aim ed at the „deconstruction“ of the supramolecular aggregate 3(18C6) · 2HN( SO2Me)2 (1,18C6 = 18-crown-6), which is known to display a ladder structure with two isotactic [18C6 - Me SO2N(H)SO2Me···)∞ polymers forming the uprights and symmetrically N - H···O bonded 18C6 rings providing the rungs, the following crystalline complexes were isolated and (except for 2b) characterized by low-temperature X-ray diffraction: 18C6-ClN (SO2Me)2 (2a, triclinic, space group P1̅, Z = 2), 18C6-PhN (SO2Me)2 (2b), 18C6 -MeN(SO2Me)2 (3, monoclinic, P21/c, Z = 8), Bz18C6-HN(SO2Me)2 (4, Bz18C6 = benzo-18-crown-6, monoclinic, P21/n, Z = 4), 18C6-2 MeN (SO2Me)2 (5, triclinic, P1̅, Z = 1), 18C6-Me2SO- HN( SO2Me) (SO2Ph) (13, triclinic, P1̅, Z = 2), and 18C6-H2OMe2SO·2HN(SO2Me)2 (14, triclinic, P1̅, Z = 2). Each of the one-dimensional polymers 2a (syndiotactic), 3 (disyndiotactic) and 4 (isotactic) mimics a single upright of 1; in contrast to 1 and 2a, where the intra-catemer connectivity solely relies on S - Me ··· crow n and crown ··· O = S hydrogen bonds, this bonding system is reinforced in 3 by N -Me ··· crown and in 4 by N - H ··· crown hydrogen bonds. Complex 5 is monomeric and matches a fragment formally extruded from the catemer 3; moreover, 3 and 5 represent a rare case of two structurally characterized 18C6 complexes containing the same uncharged guest species in distinct molecular ratios. The surprising structure of the quaternary adduct 14 exhibits an [18C6 ··· MeSO2N(H)SO2Me ··· ]∞ chain, which can be regarded both as an isolated, though unmodified upright from the ladder 1 and, being syndiotactic, as a stereochemical analogue of 2a; the potentially rung-forming *NH functions in the chain are blocked by hydrogenbonded side chains of the type * N - H ··· water ··· sulfoxide ··· H - N (SO2Me)2. The ternary complex 13 consists of chains [18C6 ··· Me2SO ··· H - N (SO2Ph)SO2Me···]∞ and is not closely related to the other structures


2014 ◽  
Vol 70 (a1) ◽  
pp. C1713-C1713
Author(s):  
Ki-Min Park ◽  
Eunji Lee ◽  
Huiyeong Ju ◽  
Suk-Hee Moon ◽  
Shim Sung Lee

Our interest in the development of MOFs with the cavities controlled by guest species has led us to investigate the MOFs based on calix[4]arene derivatives, in which metal ions link the calix unit to give the networks with the cavities accommodating several guest species, because the calix[4]arene-based MOFs contain porosity associated with both the ligand itself and the structural framework. In the present work, we employed a low rim-functionalized calix[4]arene tetraacetic acid (H4CTA) with 1,3-alternative conformation as a multidentate building block and alkyldiamines as the guest molecules. In the solvothermal reaction of H4CTA and Zn(II) ion in the presence of alkyldiamines, two types of new MOFs based on calix[4]arene tetraacetate (CTA4-) depending on the lengths of α,ω–alkyldiammonium guests have been synthesized by including suitable alkyldiammonium guests. Their single-crystal X-ray diffraction analyses reveal that the short alkyldiammonium guests such as ethyldiammonium, propyldiammonium, and butyldiammonium lead to form two-dimensional framework with the cavity consisting of two CTA4-and four Zn(II) ions whereas the alkyldiammonium guests such as heptyldiammonium, octyldiammonium, nonyldiammonium, and decyldiammonium give rise to generate three-dimensional network with the cavity surrounded by six CTA4-and four Zn(II) ions. The alkyldiammonium guests in both MOFs are well accommodated by each cavity via a variety of supramolecular interactions including electrostatic interactions, hydrogen bonds and van der Waals interactions. We will present and discuss a study on the syntheses and characterization of two new MOFs based on calix[4]arene derivative.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4126
Author(s):  
Lisa J. White ◽  
Jessica E. Boles ◽  
Kira L. F. Hilton ◽  
Rebecca J. Ellaby ◽  
Jennifer R. Hiscock

Herein, we present a series of supramolecular self-associating amphiphilic (SSA) salts and establish the potential for these molecular constructs to act as next-generation solution-state molecular delivery vehicles. We characterise the self-association of these SSAs, both alone and when co-formulated with a variety of drug(like) competitive guest species. Single crystal X-ray diffraction studies enable the observation of hydrogen-bonded self-association events in the solid state, whilst high resolution mass spectrometry confirms the presence of anionic SSA dimers in the gas-phase. These same anionic SSA dimeric species are also identified within a competitive organic solvent environment (DMSO-d6/0.5% H2O). However, extended self-associated aggregates are observed to form under aqueous conditions (H2O/5.0% EtOH) in both the absence and presence of these competitive guest species. Finally, through the completion of these studies, we present a framework to support others in the characterisation of such systems.


Soft Matter ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Xuan Peng ◽  
Fengying Zhao ◽  
Yang Peng ◽  
Jing Li ◽  
Qingdao Zeng

In this review, STM investigations reveal that surface-assisted assembly nanostructures can be well mediated by external stimuli, including guest species, light irradiation, temperature and electric field.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2864 ◽  
Author(s):  
Frederico G. Alabarse ◽  
Boby Joseph ◽  
Andrea Lausi ◽  
Julien Haines

The incorporation of guest species in zeolites has been found to strongly modify their mechanical behavior and their stability with respect to amorphization at high pressure (HP). Here we report the strong effect of H2O on the pressure-induced amorphization (PIA) in hydrated AlPO4-17. The material was investigated in-situ at HP by synchrotron X-ray powder diffraction in diamond anvil cells by using non- and penetrating pressure transmitting media (PTM), respectively, silicone oil and H2O. Surprisingly, in non-penetrating PTM, its structural response to pressure was similar to its anhydrous phase at lower pressures up to ~1.4 GPa, when the amorphization was observed to start. Compression of the structure of AlPO4-17 is reduced by an order of magnitude when the material is compressed in H2O, in which amorphization begins in a similar pressure range as in non-penetrating PTM. The complete and irreversible amorphization was observed at ~9.0 and ~18.7 GPa, respectively, in non- and penetrating PTM. The present results show that the insertion of guest species can be used to strongly modify the stability of microporous material with respect to PIA, by up to an order of magnitude.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2437 ◽  
Author(s):  
Valerij Kuznetsov

Over the past three decades, carbon nanotubes and fullerenes have become remarkable objects for starting the implementation of new models and technologies in different branches of science. To a great extent, this is defined by the unique electronic and spatial properties of nanocavities due to the ramified π-electron systems. This provides an opportunity for the formation of endohedral complexes containing non-covalently bonded atoms or molecules inside fullerenes and nanotubes. The guest species are exposed to the force field of the nanocavity, which can be described as a combination of electronic and steric requirements. Its action significantly changes conformational properties of even relatively simple molecules, including ethane and its analogs, as well as compounds with C−O, C−S, B−B, B−O, B−N, N−N, Al−Al, Si−Si and Ge−Ge bonds. Besides that, the cavity of the host molecule dramatically alters the stereochemical characteristics of cyclic and heterocyclic systems, affects the energy of pyramidal nitrogen inversion in amines, changes the relative stability of cis and trans isomers and, in the case of chiral nanotubes, strongly influences the properties of R- and S-enantiomers. The present review aims at primary compilation of such unusual stereochemical effects and initial evaluation of the nature of the force field inside nanotubes and fullerenes.


1998 ◽  
Vol 545 ◽  
Author(s):  
Ctirad Uher ◽  
Jihui Yang ◽  
Siqing Hu

AbstractA useful approach to identify materials with high thermoelectric figure of merit is to search for solids that offer great flexibility to modify and tailor the structure so as to achieve the optimal transport behavior. Among the most promising novel thermoelectric materials are solids with “open crystal structure”. They may be typified by structures with unfilled cages, crystals with an empty atomic sublattice, and by a network of polyhedral cages enclosing guest species. In this paper we present our latest results concerning transport properties in the above classes of solids. Specifically, we focus on the filled skutterudites, half-Heusler alloys, and clathrates.


2006 ◽  
Vol 59 (5) ◽  
pp. 320 ◽  
Author(s):  
Graham Smith ◽  
Urs D. Wermuth ◽  
Peter C. Healy ◽  
Jonathan M. White

The 1:1 proton-transfer brucinium compounds from the reaction of the alkaloid brucine with 5-nitrosalicylic acid, 3,5-dinitrosalicylic acid, and 5-sulfosalicylic acid, namely anhydrous brucinium 5-nitrosalicylate (1), brucinium 3,5-dinitrosalicylate monohydrate (2), and brucinium 5-sulfosalicylate trihydrate (3) have been prepared and their crystal structures determined by X-ray crystallography. All structures further demonstrate the selectivity of brucine for meta-substituted benzoic acids and comprise three-dimensional hydrogen-bonded framework polymers. Two of the compounds (1 and 3) have the previously described undulating brucine sheet host-substructures which incorporate interstitially hydrogen-bonded salicylate anion guest species and additionally in 3 the water molecules of solvation. The structure of 2 differs in having a three-centre brucinium–salicylate anion bidentate N+–H···O(carboxyl) hydrogen-bonding association linking the species through interstitial associations involving also the water molecules of solvation. A review of the crystallographic structural literature on strychnine and brucine is also given.


Sign in / Sign up

Export Citation Format

Share Document