Smart water injection

2022 ◽  
pp. 313-356
Author(s):  
Arastoo Abdi ◽  
Zahra Bahmani ◽  
Behnam Ranjbar ◽  
Masoud Riazi
Keyword(s):  
2020 ◽  
Vol 10 (6) ◽  
pp. 6652-6668

Historically, smart water flooding is proved as one of the methods used to enhance oil recovery from hydrocarbon reservoirs. This method has been spread due to its low cost and ease of operation, with changing the composition and concentration of salts in the water, the smart water injection leads to more excellent compatibility with rock and fluids. However, due to a large number of sandstone reservoirs in the world and the increase of the recovery factor using this high-efficiency method, a problem occurs with the continued injection of smart water into these reservoirs a phenomenon happened in which called rock leaching. Indeed, sand production is the most common problem in these fields. Rock wettability alteration toward water wetting is considered as the main cause of sand production during the smart water injection mechanism. During this process, due to stresses on the rock surface as well as disturbance of equilibrium, the sand production in the porous media takes place. In this paper, the effect of wettability alteration of oil wetted sandstones (0.005,0.01,0.02 and 0.03 molar stearic acid in normal heptane) on sand production in the presence of smart water is fully investigated. The implementation of an effective chemical method, which is nanoparticles, have been executed to prevent sand production. By stabilizing silica nanoparticles (SiO2) at an optimum concentration of 2000 ppm in smart water (pH=8) according to the results of Zeta potential and DLS test, the effect of wettability alteration of oil wetted sandstones on sand production in the presence of smart water with nanoparticles is thoroughly reviewed. Ultimately, a comparison of the results showed that nanoparticles significantly reduced sand production.


2018 ◽  
Vol 24 (8) ◽  
pp. 40
Author(s):  
Hussain Ali Baker ◽  
Kareem A. Alwan ◽  
Saher Faris Fadhil

Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure. In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water. The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity water flooding. The result of this experimental work shows that the water without any free ions (deionized water) and modified low salinity water have improved better oil recovery than the formation water and seawater as a secondary oil process. The increase in oil recovery factor related to the wettability alteration during low salinity water flooding which causes a decrease in the interfacial tension between the crude oil in porous media and the surface of reservoir rocks. As well as the dissolution of minerals such as calcite Ca+2 was observed in this work, which causes an increase in the pH value. All these factors led to change the wettability of rock to be more water-wet, so the oil recovery can be increased.  


2018 ◽  
Vol 165 ◽  
pp. 743-751 ◽  
Author(s):  
Zahra Aghaeifar ◽  
Skule Strand ◽  
Tina Puntervold ◽  
Tor Austad ◽  
Farasdaq Muchibbus Sajjad

Sign in / Sign up

Export Citation Format

Share Document