scholarly journals Interfacial Phenomena Effect on Sand Production Due to Optimized Smart Water with/without the Presence of Nanoparticles

2020 ◽  
Vol 10 (6) ◽  
pp. 6652-6668

Historically, smart water flooding is proved as one of the methods used to enhance oil recovery from hydrocarbon reservoirs. This method has been spread due to its low cost and ease of operation, with changing the composition and concentration of salts in the water, the smart water injection leads to more excellent compatibility with rock and fluids. However, due to a large number of sandstone reservoirs in the world and the increase of the recovery factor using this high-efficiency method, a problem occurs with the continued injection of smart water into these reservoirs a phenomenon happened in which called rock leaching. Indeed, sand production is the most common problem in these fields. Rock wettability alteration toward water wetting is considered as the main cause of sand production during the smart water injection mechanism. During this process, due to stresses on the rock surface as well as disturbance of equilibrium, the sand production in the porous media takes place. In this paper, the effect of wettability alteration of oil wetted sandstones (0.005,0.01,0.02 and 0.03 molar stearic acid in normal heptane) on sand production in the presence of smart water is fully investigated. The implementation of an effective chemical method, which is nanoparticles, have been executed to prevent sand production. By stabilizing silica nanoparticles (SiO2) at an optimum concentration of 2000 ppm in smart water (pH=8) according to the results of Zeta potential and DLS test, the effect of wettability alteration of oil wetted sandstones on sand production in the presence of smart water with nanoparticles is thoroughly reviewed. Ultimately, a comparison of the results showed that nanoparticles significantly reduced sand production.

2021 ◽  
Vol 11 (5) ◽  
pp. 13432-13452

In recent years, research activity to increase oil recovery from hydrocarbon reservoirs by smart water (SW) injection has risen sharply. Smart water injection is one of the most efficient and low-cost methods in the improved and enhanced oil recovery (IOR/EOR) process. One of the active mechanisms of smart water to increase the oil production is wettability alteration of the rock surface from oil-wet to water-wet conditions. Recently smart water injection into unconsolidated sandstone reservoirs due to disturbance of the rock surface equilibrium causes instability of formation particles and sand production. One of the main factors disturbing the equilibrium and sand production is the sandstone surface's wettability alteration mechanism caused by disjoining pressure and stresses on the rock surface. Reduction of the reservoir permeability and closure of fluid flow paths and consequent reduction of oil production are among the main damages of sand production. In this study, a complete study on optimum smart water design based on the least sedimentation due to mixing has been done by formation water compatibility tests and analysis on divalent ions through the Taguchi design. Then the water wet sandstones were converted to oil-wet condition by model oil (stearic acid + normal heptane) in different concentrations. The wettability effect of water wet, neutral wet oil-wet on the amount of sand production in the presence of smart water in the reservoir conditions was fully investigated. To prevent sand production, a very effective chemical method of nanoparticles was used. By stabilizing silica nanoparticles (SiO2) with an optimum concentration of 2000 ppm in smart water (pH = 8), according to the results of the zeta potential and Dynamic light scattering (DLS) test, the effect of wettability on sand production in the presence of smart nanofluid was fully investigated. The test results show a significant reduction in sand production and a rapid wettability alteration towards smart nanofluids' water-wet conditions. This indicates the improvement of fluid for enhanced oil recovery processes in unconsolidated sandstone reservoirs.


2018 ◽  
Vol 24 (8) ◽  
pp. 40
Author(s):  
Hussain Ali Baker ◽  
Kareem A. Alwan ◽  
Saher Faris Fadhil

Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure. In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water. The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity water flooding. The result of this experimental work shows that the water without any free ions (deionized water) and modified low salinity water have improved better oil recovery than the formation water and seawater as a secondary oil process. The increase in oil recovery factor related to the wettability alteration during low salinity water flooding which causes a decrease in the interfacial tension between the crude oil in porous media and the surface of reservoir rocks. As well as the dissolution of minerals such as calcite Ca+2 was observed in this work, which causes an increase in the pH value. All these factors led to change the wettability of rock to be more water-wet, so the oil recovery can be increased.  


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Alibi Kilybay ◽  
Bisweswar Ghosh ◽  
Nithin Chacko Thomas

In the oil and gas industry, Enhanced Oil Recovery (EOR) plays a major role to meet the global requirement for energy. Many types of EOR are being applied depending on the formations, fluid types, and the condition of the field. One of the latest and promising EOR techniques is application of ion-engineered water, also known as low salinity or smart water flooding. This EOR technique has been studied by researchers for different types of rocks. The mechanisms behind ion-engineered water flooding have not been confirmed yet, but there are many proposed mechanisms. Most of the authors believe that the main mechanism behind smart water flooding is the wettability alteration. However, other proposed mechanisms are interfacial tension (IFT) reduction between oil and injected brine, rock dissolution, and electrical double layer expansion. Theoretically, all the mechanisms have an effect on the oil recovery. There are some evidences of success of smart water injection on the field scale. Chemical reactions that happen with injection of smart water are different in sandstone and carbonate reservoirs. It is important to understand how these mechanisms work. In this review paper, the possible mechanisms behind smart water injection into the carbonate reservoir with brief history are discussed.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42570-42583
Author(s):  
Rohit Kumar Saw ◽  
Ajay Mandal

The combined effects of dilution and ion tuning of seawater for enhanced oil recovery from carbonate reservoirs. Dominating mechanisms are calcite dissolution and the interplay of potential determining ions that lead to wettability alteration of rock surface.


2020 ◽  
Vol 17 (3) ◽  
pp. 749-758
Author(s):  
Omolbanin Seiedi ◽  
Mohammad Zahedzadeh ◽  
Emad Roayaei ◽  
Morteza Aminnaji ◽  
Hossein Fazeli

AbstractWater flooding is widely applied for pressure maintenance or increasing the oil recovery of reservoirs. The heterogeneity and wettability of formation rocks strongly affect the oil recovery efficiency in carbonate reservoirs. During seawater injection in carbonate formations, the interactions between potential seawater ions and the carbonate rock at a high temperature can alter the wettability to a more water-wet condition. This paper studies the wettability of one of the Iranian carbonate reservoirs which has been under Persian Gulf seawater injection for more than 10 years. The wettability of the rock is determined by indirect contact angle measurement using Rise in Core technique. Further, the characterization of the rock surface is evaluated by molecular kinetic theory (MKT) modeling. The data obtained from experiments show that rocks are undergoing neutral wetting after the aging process. While the wettability of low permeable samples changes to be slightly water-wet, the wettability of the samples with higher permeability remains unchanged after soaking in seawater. Experimental data and MKT analysis indicate that wettability alteration of these carbonate rocks through prolonged seawater injection might be insignificant.


2020 ◽  
Vol 10 (17) ◽  
pp. 6087
Author(s):  
Mariam Shakeel ◽  
Peyman Pourafshary ◽  
Muhammad Rehan Hashmet

The fast depletion of oil reserves has steered the petroleum industry towards developing novel and cost-effective enhanced oil recovery (EOR) techniques in order to get the most out of reservoirs. Engineered water–polymer flooding (EWPF) is an emerging hybrid EOR technology that uses the synergetic effects of engineered water (EW) and polymers to enhance both the microscopic and macroscopic sweep efficiencies, which mainly results from: (1) the low-salinity effect and the presence of active ions in EW, which help in detachment of carboxylic oil material from the rock surface, wettability alteration, and reduction in the residual oil saturation; (2) the favorable mobility ratio resulting from the use of a polymer; and (3) the improved thermal and salinity resistance of polymers in EW. Various underlying mechanisms have been proposed in the literature for EW EOR effects in carbonates, but the main driving factors still need to be understood properly. Both polymer flooding (PF) and EW have associated merits and demerits. However, the demerits of each can be overcome by combining the two methods, known as hybrid EWPF. This hybrid technique has been experimentally investigated for both sandstone and carbonate reservoirs by various researchers. Most of the studies have shown the synergistic benefits of the hybrid method in terms of two- to four-fold decreases in the polymer adsorption, leading to 30–50% reductions in polymer consumption, making the project economically viable for carbonates. EWPF has resulted in 20–30% extra oil recovery in various carbonate coreflood experiments compared to high-salinity water flooding. This review presents insights into the use of hybrid EWPF for carbonates, the main recovery driving factors in the hybrid process, the advantages and limitations of this method, and some areas requiring further work.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Malek Jalilian ◽  
Peyman Pourafshary ◽  
Behnam Sedaee Sola ◽  
Mosayyeb Kamari

Designing smart water (SW) by optimizing the chemical composition of injected brine is a promising low-cost technique that has been developed for both sandstone and carbonate reservoirs for several decades. In this study, the impact of SW flooding during tertiary oil recovery phase was investigated by core flooding analysis of pure limestone carbonate rocks. Increasing the sulfate ion concentration by using CaSO4 and MgSO4 of NaCl concentration and finally reducing the total salinity were the main manipulations performed to optimize SW. The main objective of this research is to compare active cations including Ca2+ and Mg2+ in the presence of sulfate ions (SO42−) with regard to their efficiency in the enhancement of oil production during SW flooding of carbonate cores. The results revealed a 14.5% increase in the recovery factor by CaSO4 proving its greater effectiveness compared to MgSO4, which led to an 11.5% production enhancement. It was also realized that low-salinity water flooding (LSWF) did not lead to a significant positive effect as it contributed less than 2% in the tertiary stage.


Researchers have proved the significance of water injection by tuning its composition and salinity into the reservoir during smart water flooding. Once the smart water invades through the pore spaces, it destabilises crude oil-brine-rock (COBR) that leads to change in wettability of the reservoir rocks. During hydrocarbon accumulation and migration, polar organic compounds were being adsorbed on the rock surface making the reservoir oil/mixed wet in nature. Upon invasion of smart water, due to detachment of polar compounds from the rock surfaces, the wettability changes from oil/mixed wet to water wet thus enhances the oil recovery efficiency. The objective of this paper is to find optimum salinity and ionic composition of the synthetic brines at which maximum oil recovery would be observed. Three core flood studies have been conducted in the laboratory to investigate the effect of pH, composition and salinity of the injected brine over oil recovery. Every time, flooding has been conducted at reservoir formation brine salinity i.e at 1400 ppm followed by different salinities. Here, tertiary mode of flooding has been carried out for two core samples while secondary flooding for one. Results showed maximum oil recovery by 40.12% of original oil in place (OOIP) at 1050ppm brine salinity at secondary mode of flooding. So, optimized smart water has been proposed with 03 major salts, KCl, MgCl2 and CaCl2 in secondary mode of flooding that showed maximum oil recovery in terms of original oil in place.


2020 ◽  
Vol 17 (5) ◽  
pp. 1318-1328
Author(s):  
Sara Habibi ◽  
Arezou Jafari ◽  
Zahra Fakhroueian

Abstract Smart water flooding, as a popular method to change the wettability of carbonate rocks, is one of the interesting and challenging issues in reservoir engineering. In addition, the recent studies show that nanoparticles have a great potential for application in EOR processes. However, little research has been conducted on the use of smart water with nanoparticles in enhanced oil recovery. In this study, stability, contact angle and IFT measurements and multi-step core flooding tests were designed to investigate the effect of the ionic composition of smart water containing SO42− and Ca2+ ions in the presence of nanofluid on EOR processes. The amine/organosiloxane@Al2O3/SiO2 (AOAS) nanocomposite previously synthesized using co-precipitation-hydrothermal method has been used here. However, for the first time the application of this nanocomposite along with smart water has been studied in this research. Results show that by increasing the concentrations of calcium and sulfate ions in smart water, oil recovery is improved by 9% and 10%, respectively, compared to seawater. In addition, the use of smart water and nanofluids simultaneously is very effective on increasing oil recovery. Finally, the best performance was observed in smart water containing two times of sulfate ions concentration (SW2S) with nanofluids, showing increased efficiency of about 7.5%.


2021 ◽  
Vol 11 (2) ◽  
pp. 925-947
Author(s):  
Erfan Hosseini ◽  
Mohammad Sarmadivaleh ◽  
Dana Mohammadnazar

AbstractNumerous studies concluded that water injection with modified ionic content/salinity in sandstones would enhance the oil recovery factor due to some mechanisms. However, the effects of smart water on carbonated formations are still indeterminate due to a lack of experimental investigations and researches. This study investigates the effects of low-salinity (Low Sal) solutions and its ionic content on interfacial tension (IFT) reduction in one of the southwestern Iranian carbonated reservoirs. A set of organized tests are designed and performed to find each ion’s effects and total dissolved solids (TDS) on the candidate carbonated reservoir. A sequence of wettability and IFT (at reservoir temperature) tests are performed to observe the effects of controlling ions (sulfate, magnesium, calcium, and sodium) and different salinities on the main mechanisms (i.e., wettability alteration and IFT reduction). All IFT tests are performed at reservoir temperature (198 °F) to minimize the difference between reservoir and laboratory-observed alterations. In this paper, the effects of four different ions (SO42-, Ca2+, Mg2+, Na+) and total salinity TDS (40,000, 20,000, 5000 ppm) are investigated. From all obtained results, the best two conditions are applied in core flooding tests to obtain the relative permeability alterations using unsteady-state methods and Cydarex software. The final part is the simulation of the whole process using the Schlumberger Eclipse black oil simulator (E100, Ver. 2010) on the candidate reservoir sector. To conclude, at Low Sal (i.e., 5000 ppm), the sulfate ion increases sulfate concentration lower IFT, while in higher salinities, increasing sulfate ion increases IFT. Also, increasing calcium concentration at high TDS (i.e., 40,000 ppm) decreases the amount of wettability alteration. In comparison, in lower TDS values (20,000 and 5000 ppm), calcium shows a positive effect, and its concentration enhanced the alteration process. Using Low Sal solutions at water cut equal or below 10% lowers recovery rate during simulations while lowering the ultimate recovery of less than 5%.


Sign in / Sign up

Export Citation Format

Share Document