Fuel burnup, fuel management, and fuel cycle physics

2021 ◽  
pp. 331-372
Author(s):  
P. Mohanakrishnan ◽  
K. Umasankari
2019 ◽  
Vol 5 (4) ◽  
Author(s):  
Manish Kumar ◽  
Om Pal Singh

A study of transverse buckling effect on the characteristics of nuclides burnup wave in multiplying media (cylindrical geometry) has been carried out. The burnup wave is characterized in terms of velocity of propagation, transient length (TL), and transient time (TT) in establishing the burnup wave and full width at half maximum (FWHM) in the established region of the wave. The uranium–plutonium fuel cycle is considered. The sensitivity of the results is studied for different radial buckling led leakage of neutrons. It is discovered that the velocity of the wave increases with the increase in the radius of the cylinder (i.e., reduction in the transverse buckling and hence increase in radial neutron leakage). FWHM is relatively insensitive to radial neutron leakage. The transient time and transient length are very large for smaller radius; these decrease with the increase in radius. The study provides insight on the build-up of burnup wave in the neutron multiplying media and brings out the importance of transverse buckling led radial neutron leakage on the characteristics of fuel burnup wave in multiplying media.


Author(s):  
V. Wittebolle

Abstract In Belgium 57% of the electricity is presently generated by 7 nuclear units of the PWR type located in Doel and Tihange. Their total output amounts to 5632 MWe. Part of the spent fuel unloaded from the first three units has been sent till 2000 for reprocessing in the Cogema facility at La Hague. As the reprocessing of the spent fuel produced by the last four units is not covered by the contracts concluded with Cogema, Synatom, the Belgian utilities’ subsidiary in charge of the front- and back-end of the nuclear fuel cycle for all PWR reactors in Belgium, decided to study the possible solutions for a temporary storage of this spent fuel. End of 1993, the Belgian government decided that reprocessing (closed cycle) and direct disposal (open cycle) of spent fuel had to be considered as equal options in the back-end policy for nuclear fuel in Belgium. The resolution further allowed continued execution of a running reprocessing contract (from 1978) and use of the corresponding Pu for MOX in Belgian NPP’s, but requested a reprocessing contract concluded in 1990 (for reprocessing services after 2000) not to be executed during a five-year period. During this period priority was to be given to studies on the once-through cycle as an option for spent fuel management. Figure 1 is a chart showing the two alternatives for the spent fuel cycle in Belgium. In this context, Synatom entrusted Belgatom1 to develop a dedicated flask (called “bottle”) for direct disposal of spent fuel, to perform a design study of an appropriate encapsulation process and to prepare a preliminary feasibility study of a complete spent fuel conditioning plant. Meanwhile preparation works were made for the construction of an interim storage facility on both NPP sites of Doel and Tihange in order to meet increasing storage capacity needs. For selecting the type of interim storage facility, Belgatom performed a technical-economical analysis. Considerations of design and safety criteria as well as flexibility, reversibility, technical constraints, global economical aspects and construction time led to adopt dry storage with dual purpose casks (in operation since end 1995) for the Doel site and wet storage in a modular pool for the Tihange site (in operation since 1997). In parallel, ONRAF/NIRAS, the Belgian Agency for the management of radioactive waste and enriched fissile materials and the Belgian nuclear research centre, SCK•CEN, conduct underground investigations in view of geological disposal. The paper describes the methodology that Belgatom has developed to provide the utilities with appropriate solutions (reracking, dry storage in casks, wet storage in ponds, etc.) and how Belgatom demonstrated also the feasibility of spent fuel conditioning with a view to direct disposal in clay layers. The spent fuel storage facilities in operation in Belgium and designed and built by Belgatom are then briefly presented.


Author(s):  
Yoon Hee Lee ◽  
Jongsoon Song ◽  
Jongkuk Lee ◽  
Kunjai Lee

There are three options for spent fuel management, recycle, once-through and wait and see. The national policy for spent fuel in Korea is “wait and see” and it has to be clearly decided for spent fuel management. The final disposal is the last stage of the fuel cycle and it is essential even though the recycling option will be chosen for spent fuel management policy. And the long-term strategy for spent fuel management considering safety and retrievability is needed. In this study, once-through fuel cycle was focused on for back-end fuel cycle. The international trend for SF management policy and the Korean situation has been investigated. The once-through back-end fuel cycle scenarios has been developed and screened in point of technical and economical aspect. The optimal scenario has been derived by relative comparison and the long-term SF management strategy has been proposed which satisfies both domestic conditions and international trends.


Author(s):  
N. Kodochigov ◽  
Yu. Sukharev ◽  
E. Marova ◽  
N. Ponomarev-Stepnoy ◽  
E. Glushkov ◽  
...  

The GT-MHR reactor core is characterized by flexibility of neutronic characteristics at the given average power density and fixed geometrical dimensions of reactor core. Such flexibility makes it possible to start the reactor operation with one fuel cycle, and then to turn to another type of core fuel load without changes of main reactor elements: fuel block design, core and reflector size, control rod number etc. Preliminary analysis reindicates the commercial viability of the GT-MHR, part of which is due to the ability to accommodate different fuel types and cycles. This paper presents the results of studies of the neutronic characteristics of reactor cores using different fuel (low- and high-enriched uranium, MOX fuel). Comparison of different fuel cycles is carried out for a three-batch refueling option with respect to following characteristics: discharged fuel burnup, reactivity change during one partial cycle of fuel burnup, consumption of fissile isotopes per unit of produced energy, power distribution, reactivity effects, control rods worth. It is shown, that the considered options of fuel loads provide the three-year fuel campaign (with accounting of capacity factor ∼ 0,8) without change of core design, number and design of control rods at transition from the one fuel type to another.


Author(s):  
S. Zheng ◽  
R. Meinl ◽  
J. Stephens

The EPR™ reactor has been designed by AREVA to support economical fuel cycles. The progress in the reactor and systems design improves the reactor safety, and allows the EPRTM reactor to support the large range of high performance fuel management strategies covering cycle length from 12 to 24 months. Different fuel management strategies with 12, 18 and 24 month cycles are described. Economic analyses are performed to illustrate the low uranium consumption and the high fuel cycle performance compared with the fuel managements implemented in most current traditional PWR reactors.


2005 ◽  
Vol 151 (1) ◽  
pp. 35-50 ◽  
Author(s):  
Erich A. Schneider ◽  
Charles G. Bathke ◽  
Michael R. James

Author(s):  
Kaichao Sun ◽  
Michael Ames ◽  
Thomas Newton ◽  
Lin-wen Hu

A neutronic analysis of the Massachusetts Institute of Technology Research Reactor (MITR) is performed using state-of-the-art computational tools: the continuous-energy Monte Carlo code MCNP5 and the point-depletion code ORIGEN2.2. These codes are externally coupled by the in-house code package, MCODE (MCNP-ORIGEN Coupled Depletion Program), more recently, it being extended to MCODE-FM (Fuel Management). The latter features automated input file generation, data manipulation, and post-processing of the output data for the fuel cycle analysis, so that it is used to simulate the fuel management of the MITR. MCODE-FM also has an optional criticality search algorithm to simulate control blade movement. The code validation is carried out by comparing the calculated results to experimental data. Two sets of the comparisons are made in the present paper: 1) the Xe-135 reactivity effect during the reactor start-up and shutdown and 2) the thermal and fast neutron flux in an irradiation capsule in the reactor core. Good agreements have been found. The validated MCODE-FM is therefore useful for neutronic analysis and the fuel cycle simulation of the MITR. The time dependent variation of the key parameters, viz. the control blades’ axial position (maintaining criticality) and the fissile inventory in the fuel, is presented.


2005 ◽  
Vol 151 (2) ◽  
pp. 177-191 ◽  
Author(s):  
Ehud Greenspan ◽  
Pavel Hejzlar ◽  
Hiroshi Sekimoto ◽  
Georgy Toshinsky ◽  
David Wade

1965 ◽  
Author(s):  
I.G. Dillon ◽  
L. Jr. Burris ◽  
M. Levenson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document