Fundamental satellite precipitation data records

2022 ◽  
pp. 177-199
Author(s):  
Chris Kidd ◽  
James Beauchamp ◽  
Mathew Raymond Paul Sapiano ◽  
Nai-Yu Wang
2018 ◽  
Vol 25 (1) ◽  
pp. 129-143 ◽  
Author(s):  
Guo-Yuan Lien ◽  
Daisuke Hotta ◽  
Eugenia Kalnay ◽  
Takemasa Miyoshi ◽  
Tse-Chun Chen

Abstract. To successfully assimilate data from a new observing system, it is necessary to develop appropriate data selection strategies, assimilating only the generally useful data. This development work is usually done by trial and error using observing system experiments (OSEs), which are very time and resource consuming. This study proposes a new, efficient methodology to accelerate the development using ensemble forecast sensitivity to observations (EFSO). First, non-cycled assimilation of the new observation data is conducted to compute EFSO diagnostics for each observation within a large sample. Second, the average EFSO conditionally sampled in terms of various factors is computed. Third, potential data selection criteria are designed based on the non-cycled EFSO statistics, and tested in cycled OSEs to verify the actual assimilation impact. The usefulness of this method is demonstrated with the assimilation of satellite precipitation data. It is shown that the EFSO-based method can efficiently suggest data selection criteria that significantly improve the assimilation results.


2019 ◽  
Vol 9 (24) ◽  
pp. 5377
Author(s):  
Ata Amini ◽  
Abdolnabi Abdeh Kolahchi ◽  
Nadhir Al-Ansari ◽  
Mehdi Karami Moghadam ◽  
Thamer Mohammad

The present research was carried out to study drought and its effects upon water resources using remote sensing data. To this end, the tropical rainfall measuring mission (TRMM) satellite precipitation, the synoptic stations, and fountain discharge data were employed. For monitoring of drought in the study area, in Kermanshah province, Iran, the monthly precipitation data of the synoptic stations along with TRMM satellite precipitation datasets were collected and processed in the geographic information system (GIS) environment. Statistical indicators were applied to evaluate the accuracy of TRMM precipitation against the meteorological stations’ data. Standardized precipitation index, SPI, and normalized fountain discharge were used in the monitoring of drought conditions, and fountains discharge, respectively. The fountains were selected so that in addition to enjoying the most discharge rates, they spread along the study area. The evaluation of precipitation data showed that the TRMM precipitation data were of high accuracy. Studies in temporal scale are indicative of the strike of drought in this region to the effect that for most months of the year, frequency and duration in dry periods are much more than in wet periods. As for seasonal scales, apart from winter, the frequency and duration of drought in spring and autumn have been longer than in wet years. Moreover, the duration of these periods was different. A comparison between the results of changes in fountain discharges and drought index in the region has verified that the drought has caused a remarkable decline in the fountain discharges.


2017 ◽  
Vol 145 (12) ◽  
pp. 4997-5014 ◽  
Author(s):  
Liao-Fan Lin ◽  
Ardeshir M. Ebtehaj ◽  
Alejandro N. Flores ◽  
Satish Bastola ◽  
Rafael L. Bras

This paper presents a framework that enables simultaneous assimilation of satellite precipitation and soil moisture observations into the coupled Weather Research and Forecasting (WRF) and Noah land surface model through variational approaches. The authors tested the framework by assimilating precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and soil moisture data from the Soil Moisture Ocean Salinity (SMOS) satellite. The results show that assimilation of both TRMM and SMOS data can effectively improve the forecast skills of precipitation, top 10-cm soil moisture, and 2-m temperature and specific humidity. Within a 2-day time window, impacts of precipitation data assimilation on the forecasts remain relatively constant for forecast lead times greater than 6 h, while the influence of soil moisture data assimilation increases with lead time. The study also demonstrates that the forecast skill of precipitation, soil moisture, and near-surface temperature and humidity are further improved when both the TRMM and SMOS data are assimilated. In particular, the combined data assimilation reduces the prediction biases and root-mean-square errors, respectively, by 57% and 6% (for precipitation); 73% and 27% (for soil moisture); 17% and 9% (for 2-m temperature); and 33% and 11% (for 2-m specific humidity).


2010 ◽  
Vol 11 (4) ◽  
pp. 966-978 ◽  
Author(s):  
Kenneth J. Tobin ◽  
Marvin E. Bennett

Abstract Significant concern has been expressed regarding the ability of satellite-based precipitation products such as the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 products (version 6) and the U.S. National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center’s (CPC) morphing technique (CMORPH) to accurately capture rainfall values over land. Problems exist in terms of bias, false-alarm rate (FAR), and probability of detection (POD), which vary greatly worldwide and over the conterminous United States (CONUS). This paper directly addresses these concerns by developing a methodology that adjusts existing TMPA products utilizing ground-based precipitation data. The approach is not a simple bias adjustment but a three-step process that transforms a satellite precipitation product. Ground-based precipitation is used to develop a filter eliminating FAR in the authors’ adjusted product. The probability distribution function (PDF) of the satellite-based product is adjusted to the PDF of the ground-based product, minimizing bias. Failure of precipitation detection (POD) is addressed by utilizing a ground-based product during these periods in their adjusted product. This methodology has been successfully applied in the hydrological modeling of the San Pedro basin in Arizona for a 3-yr time series, yielding excellent streamflow simulations at a daily time scale. The approach can be applied to any satellite precipitation product (i.e., TRMM 3B42 version 7) and will provide a useful approach to quantifying precipitation in regions with limited ground-based precipitation monitoring.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Phu Nguyen ◽  
Eric J. Shearer ◽  
Hoang Tran ◽  
Mohammed Ombadi ◽  
Negin Hayatbini ◽  
...  

Author(s):  
Pavan Kumar Yeditha ◽  
Maheswaran Rathinasamy ◽  
Sai Sumanth Neelamsetty ◽  
Biswa Bhattacharya ◽  
Ankit Agarwal

Abstract Rainfall–runoff models are valuable tools for flood forecasting, management of water resources, and drought warning. With the advancement in space technology, a plethora of satellite precipitation products (SPPs) are available publicly. However, the application of the satellite data for the data-driven rainfall–runoff model is emerging and requires careful investigation. In this work, two satellite rainfall data sets, namely Global Precipitation Measurement-Integrated Multi-Satellite Retrieval Product V6 (GPM-IMERG) and Climate Hazards Group Infrared Precipitation with Station (CHIRPS), are evaluated for the development of rainfall–runoff models and the prediction of 1-day ahead streamflow. The accuracy of the data from the SPPs is compared to the India Meteorological Department (IMD)-gridded precipitation data set. Detection metrics showed that for light rainfall (1–10 mm), the probability of detection (POD) value ranges between 0.67 and 0.75 and with an increasing rainfall range, i.e., medium and heavy rainfall (10–50 mm and >50 mm), the POD values ranged from 0.24 to 0.45. These results indicate that the satellite precipitation performs satisfactorily with reference to the IMD-gridded data set. Using the daily precipitation data of nearly two decades (2000–2018) over two river basins in India's Eastern part, artificial neural network, extreme learning machine (ELM), and long short-time memory (LSTM) models are developed for rainfall–runoff modelling. One-day ahead runoff prediction using the developed rainfall–runoff modelling confirmed that both the SPPs are sufficient to drive the rainfall–runoff models with a reasonable accuracy estimated using the Nash–Sutcliffe Efficiency coefficient, correlation coefficient, and the root-mean-squared error. In particular, the 1-day streamflow forecasts for the Vamsadhara river basin (VRB) using LSTM with GPM-IMERG inputs resulted in NSC values of 0.68 and 0.67, while ELM models for Mahanadhi river basin (MRB) with the same input resulted in NSC values of 0.86 and 0.87, respectively, during training and validation stages. At the same time, the LSTM model with CHIRPS inputs for the VRB resulted in NSC values of 0.68 and 0.65, and the ELM model with CHIRPS inputs for the MRB resulted in NSC values of 0.89 and 0.88, respectively, in training and validation stages. These results indicated that both the SPPs could reliably be used with LSTM and ELM models for rainfall–runoff modelling and streamflow prediction. This paper highlights that deep learning models, such as ELM and LSTM, with the GPM-IMERG products can lead to a new horizon to provide flood forecasting in flood-prone catchments.


2021 ◽  
Author(s):  
Myriam Benkirane ◽  
Nour-Eddine Laftouhi ◽  
Said Khabba ◽  
Bouabid El Mansouri

<p>Accurate measurement of precipitation is very important for flood forecasting, hydrological modeling, and estimation of the water balance of any basin. The lack of a weather monitoring network is an obstacle to the accurate measurement of precipitation.</p><p>In most of the Moroccan High Atlas Mountains regions, ground observation stations are still unreliable and difficult to access due to several parameters, such as a large spatial and temporal variation of rainfall and ruggedness of topography, which lead to irregularity and scarcity of measuring stations. This area is characterized by arid and semi-arid climates where generally occurred a few rainy days but have experienced significant flash floods.</p><p>Consequently, floods are causing extended damages to the population and infrastructures every year. However, research on hydrological processes is limited due to the irregularity of the gauge station network and the large number of gaps frequently observed in the rainfall and runoff data acquired from the gauge stations. Remote sensing precipitation data with high spatial and temporal resolution are a potential alternative to gauged precipitation data.</p><p>This study evaluates the performance of the two satellite products: the Tropical Rainfall Measuring Mission (TRMM 3B43V7) Multi-satellite Precipitation Analysis (TMPA) and the Integrated Multi-satellite Retrievals for GPM (IMERG V06) (SPPs) to observed rainfall, at different time scales (daily, monthly, and annual) from 1 September 2000 to 31 August 2017 over the Ghdat watershed, with different statistical indices and hydrological assessment, to evaluate the reliability of these (SPPs) data to reproduce rainfall events by implementing them in a hydrological model, to determine their ability to detect all types of rainfall events.</p><p>Daily, monthly, and annual rainfall measurements were validated using widely used statistical measures (CC, RMSE, MAE, Bias, Nash, POD, FAR, FBI and ETS).</p><p>The results showed that: (1) The correlation between satellite precipitation data and rainfall precipitation demonstrated a high correlation on all daily, monthly, and annual scales. (2) The product (TRMM 3B42V7) exhibits better quality in terms of correlation on the monthly and annual scale, while the (GPM IMERG V06) product shows a high correlation on the daily scale compared to the measurements of the gauges. (3) The (GPM IMERG V06) product has better performance regarding the precipitation detection capability, compared to the (TRMM 3B42V7) product which could detect only tiny precipitation events, but not able to capture moderate or strong precipitation events. (4) Flood events can be simulated with the hydrological model using both observed precipitation data and satellite data with the Nash – Sutcliffe model efficiency coefficient (NSE) ranging from 0.65 to 0.90.</p><p>According to the results of this study, we concluded that (TRMM 3B42V7) and (GPM IMERG V06) satellite precipitation products can be used for flood modeling and water resource management, particularly in the semi-arid and Mediterranean region.</p>


Sign in / Sign up

Export Citation Format

Share Document