On 3D printed multiblended and hybrid-blended poly(lactic)acid composite matrix for self-assembly

2022 ◽  
pp. 1-15
Author(s):  
Sudhir Kumar ◽  
Rupinder Singh ◽  
T.P. Singh ◽  
Ajay Batish
2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3234
Author(s):  
Wangwang Yu ◽  
Lili Dong ◽  
Wen Lei ◽  
Yuhan Zhou ◽  
Yongzhe Pu ◽  
...  

To develop a new kind of environment-friendly composite filament for fused deposition modeling (FDM) 3D printing, rice straw powder (RSP)/poly(lactic acid) (PLA) biocomposites were FDM-3D-printed, and the effects of the particle size and pretreatment of RSP on the properties of RSP/PLA biocomposites were investigated. The results indicated that the 120-mesh RSP/PLA biocomposites (named 120#RSP/PLA) showed better performance than RSP/PLA biocomposites prepared with other RSP sizes. Infrared results showed that pretreatment of RSP by different methods was successful, and scanning electron microscopy indicated that composites prepared after pretreatment exhibited good interfacial compatibility due to a preferable binding force between fiber and matrix. When RSP was synergistically pretreated by alkaline and ultrasound, the composite exhibited a high tensile strength, tensile modulus, flexural strength, and flexural modulus of 58.59, 568.68, 90.32, and 3218.12 MPa, respectively, reflecting an increase of 31.19%, 16.48%, 18.75%, and 25.27%, respectively, compared with unmodified 120#RSP/PLA. Pretreatment of RSP also improved the thermal stability and hydrophobic properties, while reducing the water absorption of 120#RSP/PLA. This work is believed to provide highlights of the development of cost-effective biocomposite filaments and improvement of the properties of FDM parts.


2019 ◽  
Vol 64 (No. 12) ◽  
pp. 531-538
Author(s):  
JW Yun ◽  
SY Heo ◽  
MH Lee ◽  
HB Lee

Critical-sized bone defects are a difficult problem in both human and veterinary medicine. To address this issue, synthetic graft materials have been garnering attention. Abundant in vitro studies have proven the possibilities of poly(lactic-acid) (PLA) scaffolds and poly(lactide-co-glycolide)/hydroxyapatite (PLGA/HAp) nanofibres for treating bone defects. The present study aimed at conducting an in vivo assessment of the biological performance of a three dimensional (3D)-printed PLA scaffold filled with a PLGA/HAp nanofibrous scaffold to estimate its potential applications in bone defect reconstruction surgery. Defects were created in a 20 mm-long region of the radius bone. The defects created on the right side in six Beagle dogs (n = 6) were left untreated (Group 1). The defects on the left side (n = 6) were filled with 3D-printed PLA scaffolds incorporated with PLGA/Hap nanofibres with gelatine (Group 2). The other six Beagle dog defects were made bilaterally (n = 12) and filled with the same material as that used in Group 2 along with recombinant bone morphogenetic protein 2 (rhBMP-2) (Group 3). Both the radiological and histological examinations were performed for observing the reaction of the scaffold and the bone. Micro-computed tomography (CT) was utilised for the evaluation of the bone parameters 20 weeks after the experiment. The radiological and histological results revealed that the scaffold was biodegradable and was replaced by new bone tissue. The micro-CT revealed that the bone parameters were significantly (P < 0.05) increased in Group 3. Based on these results, our study serves as a foundation for future studies on bone defect treatment using synthetic polymeric scaffolds.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Prisca Aude Eutionnat-Diffo ◽  
Yan Chen ◽  
Jinping Guan ◽  
Aurelie Cayla ◽  
Christine Campagne ◽  
...  

Abstract Although direct deposition of polymeric materials onto textiles through 3D printing is a great technique used more and more to develop smart textiles, one of the main challenges is to demonstrate equal or better mechanical resistance, durability and comfort than those of the textile substrates before deposition process. This article focuses on studying the impact of the textile properties and printing platform temperature on the tensile and deformations of non-conductive and conductive poly lactic acid (PLA) filaments deposited onto polyethylene terephthalate (PET) textiles through 3D printing process and optimizing them using theoretical and statistical models. The results demonstrate that the deposition process affects the tensile properties of the printed textile in comparison with the ones of the textiles. The stress and strain at rupture of the first 3D printed PLA layer deposited onto PET textile material reveal to be a combination of those of the printed layer and the PET fabric due to the lower flexibility and diffusion of the polymeric printed track through the textile fabric leading to a weak adhesion at the polymer/textile interface. Besides, printing platform temperature and textile properties influence the tensile and deformation properties of the 3D printed PLA on PET textile significantly. Both, the washing process and the incorporation of conductive fillers into the PLA do not affect the tensile properties of the extruded polymeric materials. The elastic, total and permanent deformations of the 3D-printed PLA on PET fabrics are lower than the ones of the fabric before polymer deposition which demonstrates a better dimensional stability, higher stiffness and lower flexibility of these materials.


2020 ◽  
Vol 87 ◽  
pp. 106557 ◽  
Author(s):  
Bandar Aloyaydi ◽  
Subbarayan Sivasankaran ◽  
Ammar Mustafa

2020 ◽  
Vol 7-8 ◽  
pp. 100027 ◽  
Author(s):  
E.O. Cisneros-López ◽  
A.K. Pal ◽  
A.U. Rodriguez ◽  
F. Wu ◽  
M. Misra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document