Nanocellulose in packaging industry

2022 ◽  
pp. 43-66
Author(s):  
Riddhi Trivedi ◽  
Prajesh Prajapati
Keyword(s):  
2020 ◽  
Vol 14 (6) ◽  
Author(s):  
Nguyen Hoang Nguyen ◽  
Pham Thi Kieu Trang
Keyword(s):  

TAPPI Journal ◽  
2011 ◽  
Vol 10 (9) ◽  
pp. 7-13
Author(s):  
KHODADAD MALMIRCHEGINI ◽  
FARSHAD SARKHOSH RAHMANI

Flexography is an evolving printing technology that is suitable for printing on coated and uncoated paperboard and board, nonporous substrates including metalized and paperboard foils, and plastic films used especially in the packaging industry. This study evaluated the effect of paperboard and ink characteristics on flexographic print density in paperboard. Three commercial paperboards from different companies were prepared: brown kraft from Thailand, white kraft from Spain, and test liner from Iran. Four samples of process print inks from Iran were used in this investigation. Paperboard properties, such as roughness and water absorption, and ink characteristics, including solids content, PH and particle diameter, were measured. The inks were printed on paperboards using a roll no.15 applicator with a blade metering device, and the print densities were measured. Results showed that solids content, pH, and particle diameter of printing inks influenced print density, while the roughness and water absorption of the three types of paperboard had no significant influence on print density. Results also illustrated that two levels of ink viscosity (25–30 and 50–55 mPa·s) were insignificant to print density.


2020 ◽  
Vol 2020 (15) ◽  
pp. 197-1-197-7
Author(s):  
Alastair Reed ◽  
Vlado Kitanovski ◽  
Kristyn Falkenstern ◽  
Marius Pedersen

Spot colors are widely used in the food packaging industry. We wish to add a watermark signal within a spot color that is readable by a Point Of Sale (POS) barcode scanner which typically has red illumination. Some spot colors such as blue, black and green reflect very little red light and are difficult to modulate with a watermark at low visibility to a human observer. The visibility measurements that have been made with the Digimarc watermark enables the selection of a complementary color to the base color which can be detected by a POS barcode scanner but is imperceptible at normal viewing distance.


Author(s):  
Katja Reiter ◽  
Hans Bundgaard

Abstract Based on the requirements regarding target, reproducibility, and specimen surface quality, an automatic system for controlled material removal and target preparation has been developed. The tool is for metallographic failure analysis of electric and microelectronic components, and provides an accuracy of 5 micrometer. This article presents details of sample preparation and device evaluation methods. The images presented show typical objects of examination in the analysis of microstructures and materials in the electronics packaging industry with brief comments. For automatically controlled material removal and preparation, the tool offers alignment and measuring of the sample prior to the preparation. The desired preparation layers were achieved precisely and reproducibly with several specimens of the same kind. The automatic preparation system allowed the preparation of critical samples within a short time, with high precision and with excellent reproducibility.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1283
Author(s):  
Ivan Dominguez-Candela ◽  
Jose Miguel Ferri ◽  
Salvador Cayetano Cardona ◽  
Jaime Lora ◽  
Vicent Fombuena

The use of a new bio-based plasticizer derived from epoxidized chia seed oil (ECO) was applied in a poly(lactic acid) (PLA) matrix. ECO was used due to its high epoxy content (6.7%), which led to an improved chemical interaction with PLA. Melt extrusion was used to plasticize PLA with different ECO content in the 0–10 wt.% range. Mechanical, morphological, and thermal characterization was carried out to evaluate the effect of ECO percentage. Besides, disintegration and migration tests were studied to assess the future application in packaging industry. Ductile properties improve by 700% in elongation at break with 10 wt.% ECO content. Field emission scanning electron microscopy (FESEM) showed a phase separation with ECO content equal or higher than 7.5 wt.%. Thermal stabilization was improved 14 °C as ECO content increased. All plasticized PLA was disintegrated under composting conditions, not observing a delay up to 5 wt.% ECO. Migration tests pointed out a very low migration, less than 0.11 wt.%, which is to interest to the packaging industry.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3786
Author(s):  
Tomasz Garbowski ◽  
Anna Knitter-Piątkowska ◽  
Damian Mrówczyński

The corrugated board packaging industry is increasingly using advanced numerical tools to design and estimate the load capacity of its products. This is why numerical analyses are becoming a common standard in this branch of manufacturing. Such trends cause either the use of advanced computational models that take into account the full 3D geometry of the flat and wavy layers of corrugated board, or the use of homogenization techniques to simplify the numerical model. The article presents theoretical considerations that extend the numerical homogenization technique already presented in our previous work. The proposed here homogenization procedure also takes into account the creasing and/or perforation of corrugated board (i.e., processes that undoubtedly weaken the stiffness and strength of the corrugated board locally). However, it is not always easy to estimate how exactly these processes affect the bending or torsional stiffness. What is known for sure is that the degradation of stiffness depends, among other things, on the type of cut, its shape, the depth of creasing as well as their position or direction in relation to the corrugation direction. The method proposed here can be successfully applied to model smeared degradation in a finite element or to define degraded interface stiffnesses on a crease line or a perforation line.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 208
Author(s):  
Javier Brugés Martelo ◽  
Jan Lundgren ◽  
Mattias Andersson

The manufacturing of high-quality extruded low-density polyethylene (PE) paperboard intended for the food packaging industry relies on manual, intrusive, and destructive off-line inspection by the process operators to assess the overall quality and functionality of the product. Defects such as cracks, pinholes, and local thickness variations in the coating can occur at any location in the reel, affecting the sealable property of the product. To detect these defects locally, imaging systems must discriminate between the substrate and the coating. We propose an active full-Stokes imaging polarimetry for the classification of the PE-coated paperboard and its substrate (before applying the PE coating) from industrially manufactured samples. The optical system is based on vertically polarized illumination and a novel full-Stokes imaging polarimetry camera system. From the various parameters obtained by polarimetry measurements, we propose implementing feature selection based on the distance correlation statistical method and, subsequently, the implementation of a support vector machine algorithm that uses a nonlinear Gaussian kernel function. Our implementation achieves 99.74% classification accuracy. An imaging polarimetry system with high spatial resolution and pixel-wise metrological characteristics to provide polarization information, capable of material classification, can be used for in-process control of manufacturing coated paperboard.


Sign in / Sign up

Export Citation Format

Share Document