Pretreatment of fiber-based biomass material for lignin extraction

2022 ◽  
pp. 105-135
Author(s):  
Syazmi Zul Arif Hakimi Saadon ◽  
Noridah Binti Osman ◽  
Suzana Yusup
Keyword(s):  
2021 ◽  
Vol 11 (4) ◽  
pp. 1739
Author(s):  
Muhammad Ajaz Ahmed ◽  
Jae Hoon Lee ◽  
Joon Weon Choi

A synergistic combination of dioxane, acetic acid, and HCl was investigated for lignin extraction from pine wood biomass. After initial screening of reagent combination, response surface methodology (RSM) was used to optimize the lignin yield with respect to the variables of time 24–72 h, solids loading 5–15%, and catalyst dose 5–15 mL. A quadratic model predicted 8.33% of the lignin yield, and it was further confirmed experimentally and through the analysis of variance (ANOVA). Lignin at optimum combination exhibited features in terms of derivatization followed by reductive cleavage (DFRC) with a value of (305 µmol/gm), average molecular weights of 4358 and polydispersity of 1.65, and 2D heteronuclear single quantum coherence nuclear magnetic resonance spectrum (2D-HSQC NMR) analysis showing relative β-O-4 linkages (37.80%). From here it can be suggested that this fractionation can be one option for high quality lignin extraction from lignocellulosic biomass.


Author(s):  
Johanna Olsson ◽  
Michael Persson ◽  
Mats Galbe ◽  
Ola Wallberg ◽  
Ann-Sofi Jönsson

AbstractEfficient fractionation of lignocellulosic biomass is an important step toward the replacement of fossil-based products. However, the utilisation of all of the components in biomass requires various fractionation techniques. One promising process configuration is to apply steam explosion for the recovery of hemicelluloses and a subsequent hydrotropic extraction step for the delignification of the remaining solids. In this work, the influence of residence time, temperature and biomass loading on lignin recovery from birch using sodium xylene sulphonate as a hydrotrope was investigated. Our results show that residence time, temperature and biomass loading correlate positively with lignin extraction, but the effects of these parameters were limited. Furthermore, when steam explosion was implemented as the initial step, hydrotropic extraction could be performed even at room temperature, yielding a lignin extraction of 50%. Also, hydrothermal degradation of the material was necessary for efficient delignification with sodium xylene sulphonate, regardless of whether it occurs during steam explosion pretreatment or is achieved at high temperatures during the hydrotropic extraction.


2021 ◽  
Vol 11 (1) ◽  
pp. 454
Author(s):  
Adil Mazar ◽  
Naceur Jemaa ◽  
Waleed Wafa Al Dajani ◽  
Mariya Marinova ◽  
Michel Perrier

A pre-hydrolysate is an aqueous stream obtained during the production of hardwood kraft dissolving pulp. It is rich in sugars and contains dissolved organic matters. The purpose of this study is to investigate the optimization of lignin recovery from wood pre-hydrolysates and to characterize the extracted lignin. The optimal conditions for lignin extraction have been determined to be (a) a filtration temperature of 40 °C, (b) a sulfuric acid concentration of 8.5 kg·m−3, and (c) a coagulation time of 180 min. Using these conditions, high filtration rates have been obtained and the extracted lignin has a low content of impurities (8.3%), a low molecular weight (1270 Da), and a very low polydispersity (Mw/Mn = 1.22). Compared to kraft lignin, the pre-hydrolysate lignin has a much lower molecular weight and could be a potential candidate for niche applications. A high lignin recovery rate is possible (52% of the total lignin content in the pre-hydrolysate).


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1090
Author(s):  
Solange Magalhães ◽  
Alexandra Filipe ◽  
Elodie Melro ◽  
Catarina Fernandes ◽  
Carla Vitorino ◽  
...  

Lignocellulosic biomass fractionation is typically performed using methods that are somehow harsh to the environment, such as in the case of kraft pulping. In recent years, the development of new sustainable and environmentally friendly alternatives has grown significantly. Among the developed systems, bio-based solvents emerge as promising alternatives for biomass processing. Therefore, in the present work, the bio-based and renewable chemicals, levulinic acid (LA) and formic acid (FA), were combined to fractionate lignocellulosic waste (i.e., maritime pine sawdust) and isolate lignin. Different parameters, such as LA:FA ratio, temperature, and extraction time, were optimized to boost the yield and purity of extracted lignin. The LA:FA ratio was found to be crucial regarding the superior lignin extraction from the waste biomass. Moreover, the increase in temperature and extraction time enhances the amount of extracted residue but compromises the lignin purity and reduces its molecular weight. The electron microscopy images revealed that biomass samples suffer significant structural and morphological changes, which further suggests the suitability of the newly developed bio-fractionation process. The same was concluded by the FTIR analysis, in which no remaining lignin was detected in the cellulose-rich fraction. Overall, the novel combination of bio-sourced FA and LA has shown to be a very promising system for lignin extraction with high purity from biomass waste, thus contributing to extend the opportunities of lignin manipulation and valorization into novel added-value biomaterials.


Author(s):  
Jingyu Xu ◽  
Yue Kong ◽  
Boyu Du ◽  
Xing Wang ◽  
Jinghui Zhou
Keyword(s):  

2020 ◽  
Vol 146 ◽  
pp. 112153
Author(s):  
Yan Wu ◽  
Hairui Ji ◽  
Xingxiang Ji ◽  
Zhongjian Tian ◽  
Jiachuan Chen

Sign in / Sign up

Export Citation Format

Share Document