The Shikimate Pathway: Biosynthesis of the Aromatic Amino Acids

1974 ◽  
pp. 3-48 ◽  
Author(s):  
Edwin Haslam
2020 ◽  
Author(s):  
Miia J. Rainio ◽  
Suvi Ruuskanen ◽  
Marjo Helander ◽  
Kari Saikkonen ◽  
Irma Saloniemi ◽  
...  

ABSTRACTGlyphosate is the leading herbicide worldwide, but it also affects prokaryotes because it targets the central enzyme (EPSPS) of the shikimate pathway in the synthesis of the three essential aromatic amino acids in autotrophs. Our results reveal that bacteria easily become resistant to glyphosate through changes in the EPSPS active site. This indicates the importance of examining how glyphosate affects microbe-mediated ecosystem functions and human microbiomes.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ainhoa Zulet-González ◽  
Maria Barco-Antoñanzas ◽  
Miriam Gil-Monreal ◽  
Mercedes Royuela ◽  
Ana Zabalza

Proceedings ◽  
2020 ◽  
Vol 76 (1) ◽  
pp. 6
Author(s):  
Tuomas Tall ◽  
Pere Puigbò

5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) is the central enzyme of the shikimate pathway to synthesize three aromatic amino acids in fungi, plants and prokaryotes. This enzyme is the target of the herbicide glyphosate. In most plants and prokaryotes, the EPSPS protein is constituted by a single domain, whereas in fungi, it contains several EPSPS-associated domains. Here, we perform a comprehensive analysis of 390 EPSPS proteins of fungi to determine the distribution and the evolution of the EPSPS-associated domains. The results of this study will be useful to determine the potential differential impact of glyphosate on alternative domain architectures in fungi.


2021 ◽  
Vol 11 ◽  
Author(s):  
Moran Oliva ◽  
Aviv Guy ◽  
Gad Galili ◽  
Evgenia Dor ◽  
Ron Schweitzer ◽  
...  

Aromatic amino acids (AAAs) synthesized in plants via the shikimate pathway can serve as precursors for a wide range of secondary metabolites that are important for plant defense. The goals of the current study were to test the effect of increased AAAs on primary and secondary metabolic profiles and to reveal whether these plants are more tolerant to abiotic stresses (oxidative, drought and salt) and to Phelipanche egyptiaca (Egyptian broomrape), an obligate parasitic plant. To this end, tobacco (Nicotiana tabacum) plants were transformed with a bacterial gene (AroG) encode to feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway. Two sets of transgenic plants were obtained: the first had low expression of the AroG protein, a normal phenotype and minor metabolic changes; the second had high accumulation of the AroG protein with normal, or deleterious morphological changes having a dramatic shift in plant metabolism. Metabolic profiling analysis revealed that the leaves of the transgenic plants had increased levels of phenylalanine (up to 43-fold), tyrosine (up to 24-fold) and tryptophan (up to 10-fold) compared to control plants having an empty vector (EV) and wild type (WT) plants. The significant increase in phenylalanine was accompanied by higher levels of metabolites that belong to the phenylpropanoid pathway. AroG plants showed improved tolerance to salt stress but not to oxidative or drought stress. The most significant improved tolerance was to P. aegyptiaca. Unlike WT/EV plants that were heavily infected by the parasite, the transgenic AroG plants strongly inhibited P. aegyptiaca development, and only a few stems of the parasite appeared above the soil. This delayed development of P. aegyptiaca could be the result of higher accumulation of several phenylpropanoids in the transgenic AroG plants and in P. aegyptiaca, that apparently affected its growth. These findings indicate that high levels of AAAs and their related metabolites have the potential of controlling the development of parasitic plants.


2008 ◽  
Vol 74 (17) ◽  
pp. 5497-5503 ◽  
Author(s):  
Ya-Jun Liu ◽  
Pan-Pan Li ◽  
Ke-Xin Zhao ◽  
Bao-Jun Wang ◽  
Cheng-Ying Jiang ◽  
...  

ABSTRACT 3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 2.5.1.54) catalyzes the first step of the shikimate pathway that finally leads to the biosynthesis of aromatic amino acids phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr). In Corynebacterium glutamicum ATCC 13032, two chromosomal genes, NCgl0950 (aroF) and NCgl2098 (aroG), were located that encode two putative DAHP synthases. The deletion of NCgl2098 resulted in the loss of the ability of C. glutamicum RES167 (a restriction-deficient strain derived from C. glutamicum ATCC 13032) to grow in mineral medium; however, the deletion of NCgl0950 did not result in any observable phenotypic alteration. Analysis of DAHP synthase activities in the wild type and mutants of C. glutamicum RES167 indicated that NCgl2098, rather than NCgl0950, was involved in the biosynthesis of aromatic amino acids. Cloning and expression in Escherichia coli showed that both NCgl0950 and NCgl2098 encoded active DAHP synthases. Both the NCgl0950 and NCgl2098 DAHP synthases were purified from recombinant E. coli cells and characterized. The NCgl0950 DAHP synthase was sensitive to feedback inhibition by Tyr and, to a much lesser extent, by Phe and Trp. The NCgl2098 DAHP synthase was slightly sensitive to feedback inhibition by Trp, but not sensitive to Tyr and Phe, findings that were in contrast to the properties of previously known DAHP synthases from C. glutamicum subsp. flavum. Both Co2+ and Mn2+ significantly stimulated the NCgl0950 DAHP synthase's activity, whereas Mn2+ was much more stimulatory than Co2+ to the NCgl2098 DAHP synthase's activity.


Author(s):  
Gary W. Morrow

Like other amino acids, the aromatic amino acids phenylalanine, tyrosine, and tryptophan are vitally important for protein synthesis in all organisms. However, while animals can synthesize tyrosine via oxidation of phenylalanine, they can synthesize neither phenylalanine itself nor tryptophan and so these essential amino acids must be obtained in the diet, usually from plant material. Though many other investigators made significant contributions in this area over the years, it was Bernhard Davis in the early 1950s whose use of mutant stains of Escherichia coli led to a full understanding of the so-called shikimic acid pathway that is used by plants and also by some microorganisms for the biosynthesis of these essential amino acids. The pathway is almost completely devoted to their synthesis for protein production in bacteria, while in plants the pathway extends their use to the construction of a wide array of secondary metabolites, many of which are valuable medicinal agents. These secondary metabolites range from simple and familiar compounds such as vanillin (vanilla flavor and fragrance) and eugenol (oil of clove, a useful dental anesthetic) to more complex structures such as pinoresinol, a common plant biochemical, and podophyllotoxin, a powerful cancer chemotherapy agent. Earlier in Chapter 3, we encountered two important intermediates, erythrose-4-phosphate and phosphoenolpyruvate (PEP), each of which was derived from a different pathway utilized in carbohydrate metabolism. Erythrose-4-P was an intermediate in one of the steps of the pentose phosphate pathway while hydrolysis of PEP to pyruvic acid was the final step in glycolysis. These two simple intermediates provide the seven carbon atoms required for construction of shikimic acid itself. The two are linked to one another via a sequence of enzyme-mediated aldol-type reactions, the first being a bimolecular reaction and the second an intramolecular variant that ultimately leads to a cyclic precursor of shikimic acid known as 3-dehydroquinic acid as shown in Fig. 6.3. Subsequent dehydration of 3-dehydroquinic acid leads to 3-dehydroshikimic acid which then leads directly to shikimic acid via NADPH reduction.


Author(s):  
Gary W. Morrow

Building on the foundation of a one-year introductory course in organic chemistry, Bioorganic Synthesis: An Introduction focuses on organic reactions involved in the biosynthesis of naturally-occurring organic compounds with special emphasis on natural products of pharmacological interest. The book is designed specifically for undergraduate students, rather than as an exhaustive reference work for graduate students or professional researchers and is intended to support undergraduate courses for students majoring in chemistry, biochemistry, biology, pre-medicine, and bioengineering programs who would benefit from a deeper understanding of the chemical logic of reactions carried out in organisms and the origins and uses of the important organic compounds they often produce. The book assumes no prior background in biochemistry and consists of eight chapters: i) a brief review of relevant topics from introductory organic chemistry; ii) presentation of essential organic and biochemical reactions used throughout the book along with a brief introduction to coenzymes; iii) review of basic carbohydrates and the biosynthesis of amino acids; iv) the terpenoid pathway for biosynthesis of all important classes of terpenoids and steroids; v) the acetate pathway for biosynthesis of saturated and unsaturated fatty acids, prostaglandins and acetate-derived polyketide natural products; vi) the biosynthesis of the shikimate pathway products derived from aromatic amino acids; vii) an introduction to biosynthesis of major alkaloids and related nitrogenous compounds; and viii) an overview of laboratory organic synthesis as it relates to the challenges faced by synthetic and medicinal chemists who must recreate intricate natural product structures in the laboratory.


1989 ◽  
Vol 67 (8) ◽  
pp. 2235-2239 ◽  
Author(s):  
G. Gay ◽  
R. Rouillon ◽  
J. Bernillon ◽  
J. Favre-Bonvin

The effect of different precursors, aromatic amino acids, or intermediates of the shikimate pathway (pathway for aromatic amino acids biosynthesis), on indole-3-acetic acid (IAA) synthesis by the ectomycorrhizal fungus Hebeloma hiemale was studied. This fungus did not release detectable amounts of IAA when cultivated on a medium containing no precursor or supplemented with 1 mM phenylalanine, 1 mM tyrosine or 1 mM shikimic acid. IAA accumulation in culture filtrates was low (0.5 μmol per flask) when the medium was supplemented with 1 mM anthranilic acid. The fungus released 1.6 μmol of IAA when cultivated on a medium containing 1 mM indole and 6.9 μmol in the presence of 1 mM tryptophan. These results were confirmed by studying the ability of crude enzyme extracts to convert these precursors to IAA. Specific IAA synthesizing activity was of the same order when indole or tryptophan were used as precursors. The comparison of in vivo and in vitro activity of IAA synthesizing enzymes demonstrated that a need for tryptophan concentrations higher than 0.1 mM to obtain detectable IAA synthesis is due to the low ratio of tryptophan breakdown into IAA. The inability of H. hiemale to synthesize IAA in the absence of precursors or in the presence of shikimic acid may be ascribed to a very poor endogenous tryptophan accumulation in the hyphae due to feed back inhibition of the anthranilate synthetase by tryptophan. These results indicate that precursor availability in root exudates is probably one of the main limiting factors for IAA release by ectomycorrhizal fungi under symbiotic association. Key words: ectomycorrhizal fungus, Hebeloma, indole-3-acetic acid, tryptophan, indole, shikimate pathway.


Sign in / Sign up

Export Citation Format

Share Document