Complete Determination of Local Crustal Deformation from Geodetic Observations

Author(s):  
W.I. REILLY
1991 ◽  
Vol 24 (6) ◽  
pp. 982-986 ◽  
Author(s):  
T. Ishikawa ◽  
K. Hirano ◽  
S. Kikuta

A new method for complete determination of polarization state in the hard X-ray region is described. The system consists of a perfect-crystal phase retarder and a linear polarization analyzer. This method gives not only the amplitude ratio of mutually perpendicular electric vector components and the phase shift between them but also the proportion of unpolarized radiation.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Claudio Corianò ◽  
Matteo Maria Maglio ◽  
Dimosthenis Theofilopoulos

AbstractWe elaborate on the structure of the conformal anomaly effective action up to 4-th order, in an expansion in the gravitational fluctuations (h) of the background metric, in the flat spacetime limit. For this purpose we discuss the renormalization of 4-point functions containing insertions of stress-energy tensors (4T), in conformal field theories in four spacetime dimensions with the goal of identifying the structure of the anomaly action. We focus on a separation of the correlator into its transverse/traceless and longitudinal components, applied to the trace and conservation Ward identities (WI) in momentum space. These are sufficient to identify, from their hierarchical structure, the anomaly contribution, without the need to proceed with a complete determination of all of its independent form factors. Renormalization induces sequential bilinear graviton-scalar mixings on single, double and multiple trace terms, corresponding to $$R\square ^{-1}$$ R □ - 1 interactions of the scalar curvature, with intermediate virtual massless exchanges. These dilaton-like terms couple to the conformal anomaly, as for the chiral anomalous WIs. We show that at 4T level a new traceless component appears after renormalization. We comment on future extensions of this result to more general backgrounds, with possible applications to non local cosmologies.


2012 ◽  
Vol 58 (1) ◽  
pp. 88-94
Author(s):  
K. Li ◽  
L.Z. Nu ◽  
K.L. Khe ◽  
K.H. Song

A sensitive chemiluminescence method, based on the enhancive effect of phenobarbital on the chemiluminescence reaction between luminol and dissolved oxygen in a flow injection system, was proposed for the determination of phenobarbital. The chemiluminescence intensity responded to the concentration of phenobarbital linearly ranging from 0.05 to 10 ng⋅ml-1 with the detection limit of 0.02 ng⋅ml-1 (3σ). At a flow rate of 2.0 ml⋅min-1, a complete determination of phenobarbital, including sampling and washing, could be accomplished in 0.5 min, offering the sampling efficiency of 120 h-1 accordingly. The method was applied successfully in an assay of PB for pharmaceutical preparations, human urine and serum without any pretreatment with recovery from 95.7 to 106.7% and RSDs of less than 3.0%.


1968 ◽  
Vol 8 (3) ◽  
pp. 115-121 ◽  
Author(s):  
P. Bohler ◽  
W. Schumann

2021 ◽  
Author(s):  
Yani Najman ◽  
Shihu Li

<p>Knowledge of the timing of India-Asia collision and associated Tethyan closure in the region is critical to advancement of models of crustal deformation.   One of a number of methods traditionally used to constrain the time of India-Asia collision is the detrital approach. This involves determination of when Asian material first arrived on the Indian plate, with most recent estimates documenting collision at ca 60 Ma (e.g. Hu et al, Earth Science Reviews 2016). However, more recently, such data and a number of other approaches providing data previously used to determine the timing of India-Asia collision, have been controversially re-interpreted to represent collision of India with an Island arc, with terminal India-Asia collision occurring significantly later, ca 34 Ma (e.g. Aitchison et al, J. Geophysical Research 2007). Clearly, for the detrital approach to advance the debate, discrimination between Asian detritus and arc detritus is required. Such a discrimination was proposed in Najman et al (EPSL 2017), dating the timing of terminal India-Asia collision at 54 Ma. However, this evidence is far from universally accepted.  For example, such data are at variance with various palaeomagnetic studies which suggest that an oceanic Transtethyan subduction zone existed 600-2300 kms south of the Eurasian margin in the Paleocene  (e.g. Martin et al, PNAS 2020) and therefore these authors propose different explanations to explain the detrital data.  This presentation will discuss the uncertainties associated with our current understanding of the timing of India-Asia collision.</p>


1967 ◽  
Vol 19 ◽  
pp. 419-426 ◽  
Author(s):  
R. J. Warne

A bisimple semigroup S is called I-bisimple if Es, the set of idempotents of S, with its natural order is order-isomorphic to I, the set of integers, under the reverse of the usual order. In (9), the author completely determined the structure of I-bisimple semigroups mod groups; in this paper, he also gave an isomorphism theorem, a homomorphism theorem, an explicit determination of the maximal group homomorphic image, and a complete determination of the congruences for these semigroups.


Sign in / Sign up

Export Citation Format

Share Document