Evaluation of post weld heat treatment temperature of low alloy steel weld joints using ac magnetic method

Author(s):  
M. Shiwa ◽  
Y. Horii ◽  
R. Kume ◽  
Y. Yoneyama ◽  
A. Yamaguche
Author(s):  
Steven L. McCracken ◽  
Richard E. Smith

Temperbead welding is common practice in the nuclear power industry for in-situ repair of quenched and tempered low alloy steels where post weld heat treatment is impractical. The temperbead process controls the heat input such that the weld heat-affected-zone (HAZ) in the low alloy steel is tempered by the welding heat of subsequent layers. This tempering eliminates the need for post weld heat treatment (PWHT). Unfortunately, repair organizations in the nuclear power industry are experiencing difficulty when attempting to qualify temperbead welding procedures on new quenched and tempered low alloy steel base materials manufactured to modern melting and deoxidation practices. The current ASME Code methodology and protocol for verification of adequate fracture toughness in materials was developed in the early 1970s. This paper reviews typical temperbead qualification results for vintage heats of quenched and tempered low alloy steels and compares them to similar test results obtained with modern materials of the same specification exhibiting superior fracture toughness.


2018 ◽  
Vol 37 (7) ◽  
pp. 649-654 ◽  
Author(s):  
Wang Shuo ◽  
Wei Limin ◽  
Cheng Yi ◽  
Tan Shuping

AbstractThe microstructures and mechanical properties of dissimilar weld joints between T92 and Super 304H steels were investigated. Dissimilar weld joints with four groove angles were constructed using gas tungsten arc welding. The results showed that post-weld heat treatment improved the mechanical properties of the dissimilar weld joints. The optimal groove angle for T92/Super 304H dissimilar weld joints was found to be 20°, considering mechanical properties. Furthermore, the transformation from equiaxed dendrites to columnar dendrites was observed in the weld metal. Epitaxial growth and delta ferrites were found around the fusion line between the Super 304H and the weld metal.


2018 ◽  
Vol 49 (4) ◽  
pp. 1276-1286 ◽  
Author(s):  
Nikhil Shajan ◽  
Kanwer Singh Arora ◽  
Brajesh Asati ◽  
Vikram Sharma ◽  
Mahadev Shome

Sign in / Sign up

Export Citation Format

Share Document