Study of floor acceleration demands in moment frame structures

Author(s):  
S. Taghavi ◽  
E. Miranda
1998 ◽  
Vol 46 (1-3) ◽  
pp. 454 ◽  
Author(s):  
Jay Allen ◽  
Ralph M Richard ◽  
James Partridge

Author(s):  
F. Zahmatkesh ◽  
E. Talebi

In this paper the main goal is to evaluate the vertical and slant bolted endplate connections performance in steel moment frame structures under thermal effect in elastic field, and by a finite element software. the connections are simulated to complete and verify simple modeling of analytical and numerical analysis of the behavior of vertical and slant bolted endplate connections due to increase in temperature. The results that are obtained from performance of a vertical bolted endplate connection and a slant bolted endplate connection due to increase in temperature will be compared.


2017 ◽  
Vol 62 (1) ◽  
pp. 232-249 ◽  
Author(s):  
Mohammad Jalilzadeh Afshari ◽  
Ali Kheyroddin ◽  
Majid Gholhaki

Necessity for adaption of high-rise reinforced concrete structures’ design and practical steps of implementation through nonlinear staged analysis by consideration of long-term behavior of concrete have always been strongly recommended by researchers in recent years. Cumulative column shortening in conventional analyses is the most important consequence of neglecting the above issues. In this article, numerous modeling and extensive nonlinear staged analyses are carried out on structures with different geometrical characteristics and extremely simple empirical equations to estimate column shortening caused by creep, shrinkage and time changes of modulus of elasticity are provided in such a way that these relations can be independent of conventional parameters of ACI209R-92 regulations used in prediction of mentioned axial strains. Results obtained from validation of the proposed equations show high compliance of all proposed equations for up to 30 floors and also show accuracy of proposed shrinkage equation for the moment frame structures higher than the studied range.


2003 ◽  
Vol 19 (2) ◽  
pp. 237-254 ◽  
Author(s):  
Stephen A. Mahin ◽  
James O. Malley ◽  
Ronald O. Hamburger ◽  
Michael Mahoney

Considerable research has been conducted worldwide to assess the unexpected damage to welded steel moment-frame buildings during the 1989 Loma Prieta, 1994 Northridge, and 1995 Hyogo-ken Nanbu earthquakes, as well as to find effective and economical remedies that can be incorporated into analysis, design, and construction practices. A major six-year program has been undertaken with the sponsorship of the U.S. Federal Emergency Management Agency (FEMA) to synthesize and interpret the results of this research, and to conduct additional investigations to develop reliable, practical, and cost-effective guidelines for the design and construction of new steel moment-frame structures, as well as for the inspection, evaluation and repair or upgrading of existing ones. Topics investigated as part of this program include (1) performance of steel buildings in past earthquakes; (2) material properties and fracture issues; (3) joining and inspection; (4) connection performance; (5) system performance; (6) performance prediction and evaluation; and (7) social, economic, and political impacts. The project utilizes a performance-based engineering framework and addresses issues pertaining to various types of steel moment-resisting frames including those utilizing welded, bolted, and partially restrained connections. The guidelines are applicable to regions of low, medium, and high seismicity throughout the United States. This paper reviews the overall organization and management of this program of research, guideline development, training and peer evaluation, the scope of the investigations undertaken, and the general organization and contents of the guidelines developed.


Sign in / Sign up

Export Citation Format

Share Document