Master equation

Nucleation ◽  
2000 ◽  
pp. 115-135 ◽  
Author(s):  
Dimo Kashchiev
Keyword(s):  
2020 ◽  
Vol 234 (7-9) ◽  
pp. 1251-1268 ◽  
Author(s):  
Satya Prakash Joshi ◽  
Prasenjit Seal ◽  
Timo Theodor Pekkanen ◽  
Raimo Sakari Timonen ◽  
Arrke J. Eskola

AbstractMethyl-Crotonate (MC, (E)-methylbut-2-enoate, CH3CHCHC(O)OCH3) is a potential component of surrogate fuels that aim to emulate the combustion of fatty acid methyl ester (FAME) biodiesels with significant unsaturated FAME content. MC has three allylic hydrogens that can be readily abstracted under autoignition and combustion conditions to form a resonantly-stabilized CH2CHCHC(O)OCH3 radical. In this study we have utilized photoionization mass spectrometry to investigate the O2 addition kinetics and thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical. First we determined an upper limit for the bimolecular rate coefficient of CH2CHCHC(O)OCH3 + O2 reaction at 600 K (k ≤ 7.5 × 10−17 cm3 molecule−1 s−1). Such a small rate coefficient suggest this reaction is unlikely to be important under combustion conditions and subsequent efforts were directed towards measuring thermal unimolecular decomposition kinetics of CH2CHCHC(O)OCH3 radical. These measurements were performed between 750 and 869 K temperatures at low pressures (<9 Torr) using both helium and nitrogen bath gases. The potential energy surface of the unimolecular decomposition reaction was probed at density functional (MN15/cc-pVTZ) level of theory and the electronic energies of the stationary points obtained were then refined using the DLPNO-CCSD(T) method with the cc-pVTZ and cc-pVQZ basis sets. Master equation simulations were subsequently carried out using MESMER code along the kinetically important reaction pathway. The master equation model was first optimized by fitting the zero-point energy corrected reaction barriers and the collisional energy transfer parameters $\Delta{E_{{\text{down}},\;{\text{ref}}}}$ and n to the measured rate coefficients data and then utilize the constrained model to extrapolate the decomposition kinetics to higher pressures and temperatures. Both the experimental results and the MESMER simulations show that the current experiments for the thermal unimolecular decomposition of CH2CHCHC(O)OCH3 radical are in the fall-off region. The experiments did not provide definite evidence about the primary decomposition products.


Author(s):  
Luis L. Bonilla ◽  
Manuel Carretero ◽  
Filippo Terragni

AbstractWe study a system of particles in a two-dimensional geometry that move according to a reinforced random walk with transition probabilities dependent on the solutions of reaction-diffusion equations (RDEs) for the underlying fields. A birth process and a history-dependent killing process are also considered. This system models tumor-induced angiogenesis, the process of formation of blood vessels induced by a growth factor (GF) released by a tumor. Particles represent vessel tip cells, whose trajectories constitute the growing vessel network. New vessels appear and may fuse with existing ones during their evolution. Thus, the system is described by tracking the density of active tips, calculated as an ensemble average over many realizations of the stochastic process. Such density satisfies a novel discrete master equation with source and sink terms. The sink term is proportional to a space-dependent and suitably fitted killing coefficient. Results are illustrated studying two influential angiogenesis models.


2020 ◽  
Vol 28 (5) ◽  
pp. 440-449 ◽  
Author(s):  
Simon Zeder ◽  
Christoph Kirsch ◽  
Urs Aeberhard ◽  
Balthasar Blülle ◽  
Sandra Jenatsch ◽  
...  

2020 ◽  
Vol 234 (7-9) ◽  
pp. 1233-1250 ◽  
Author(s):  
Arrke J. Eskola ◽  
Mark A. Blitz ◽  
Michael J. Pilling ◽  
Paul W. Seakins ◽  
Robin J. Shannon

AbstractThe rate coefficient for the unimolecular decomposition of CH3OCH2, k1, has been measured in time-resolved experiments by monitoring the HCHO product. CH3OCH2 was rapidly and cleanly generated by 248 nm excimer photolysis of oxalyl chloride, (ClCO)2, in an excess of CH3OCH3, and an excimer pumped dye laser tuned to 353.16 nm was used to probe HCHO via laser induced fluorescence. k1(T,p) was measured over the ranges: 573–673 K and 0.1–4.3 × 1018 molecule cm−3 with a helium bath gas. In addition, some experiments were carried out with nitrogen as the bath gas. Ab initio calculations on CH3OCH2 decomposition were carried out and a transition-state for decomposition to CH3 and H2CO was identified. This information was used in a master equation rate calculation, using the MESMER code, where the zero-point-energy corrected barrier to reaction, ΔE0,1, and the energy transfer parameters, ⟨ΔEdown⟩ × Tn, were the adjusted parameters to best fit the experimental data, with helium as the buffer gas. The data were combined with earlier measurements by Loucks and Laidler (Can J. Chem.1967, 45, 2767), with dimethyl ether as the third body, reinterpreted using current literature for the rate coefficient for recombination of CH3OCH2. This analysis returned ΔE0,1 = (112.3 ± 0.6) kJ mol−1, and leads to $k_{1}^{\infty}(T)=2.9\times{10^{12}}$ (T/300)2.5 exp(−106.8 kJ mol−1/RT). Using this model, limited experiments with nitrogen as the bath gas allowed N2 energy transfer parameters to be identified and then further MESMER simulations were carried out, where N2 was the buffer gas, to generate k1(T,p) over a wide range of conditions: 300–1000 K and N2 = 1012–1025 molecule cm−3. The resulting k1(T,p) has been parameterized using a Troe-expression, so that they can be readily be incorporated into combustion models. In addition, k1(T,p) has been parametrized using PLOG for the buffer gases, He, CH3OCH3 and N2.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Samim Akhtar ◽  
Sayantan Choudhury ◽  
Satyaki Chowdhury ◽  
Debopam Goswami ◽  
Sudhakar Panda ◽  
...  

Abstract In this work, our prime objective is to study non-locality and long range effect of two body correlation using quantum entanglement from various information theoretic measure in the static patch of de Sitter space using a two body Open Quantum System (OQS). The OQS is described by a system of two entangled atoms, surrounded by a thermal bath, which is modelled by a massless probe scalar field. Firstly, we partially trace over the bath field and construct the Gorini Kossakowski Sudarshan Lindblad (GSKL) master equation, which describes the time evolution of the reduced subsystem density matrix. This GSKL master equation is characterized by two components, these are-Spin chain interaction Hamiltonian and the Lindbladian. To fix the form of both of them, we compute the Wightman functions for probe massless scalar field. Using this result alongwith the large time equilibrium behaviour we obtain the analytical solution for reduced density matrix. Further using this solution we evaluate various entanglement measures, namely Von-Neumann entropy, R$$e'$$e′nyi entropy, logarithmic negativity, entanglement of formation, concurrence and quantum discord for the two atomic subsystem on the static patch of De-Sitter space. Finally, we have studied violation of Bell-CHSH inequality, which is the key ingredient to study non-locality in primordial cosmology.


Sign in / Sign up

Export Citation Format

Share Document