Growth of Multicomponent Perovskite Oxide Crystals

2003 ◽  
pp. 299-333 ◽  
Author(s):  
Bonnie L. Gersten
1993 ◽  
Vol 335 ◽  
Author(s):  
Z. C. Feng ◽  
B. S. Kwak ◽  
A. Erbil ◽  
L. A. Boatner

AbstractLead titanate (PbTiO3) has been grown on a variety of substrates by using the metalorganic chemical vapor deposition (MOCVD) technique. The substrates employed included Si, GaAs, MgO, fused-quartz, sapphire, and KTaO3. Raman spectra from these heterostructures are presented. All of the films exhibited the strong, narrow spectral features characteristic of PbTiO3 perovskite-oxide crystals and indicative of high crystalline quality. Temperature behaviors of the Raman modes, including the socalled “soft-mode”, were studied. A “difference-Raman” technique was used to distinguish the contributions of the PbTiO3 film and the KTaO3 single-crystal substrate.


Author(s):  
Rui Huang ◽  
Chaesung Lim ◽  
Myeong Gon Jang ◽  
Ji Young Hwang ◽  
Jeong Woo Han

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2126
Author(s):  
Junyoung Lee ◽  
Woojun Seol ◽  
Gopinathan Anoop ◽  
Shibnath Samanta ◽  
Sanjith Unithrattil ◽  
...  

The low-temperature processability of molecular ferroelectric (FE) crystals makes them a potential alternative for perovskite oxide-based ferroelectric thin films. Quinuclidinium perrhenate (HQReO4) is one such molecular FE crystal that exhibits ferroelectricity when crystallized in an intermediate temperature phase (ITP). However, bulk HQReO4 crystals exhibit ferroelectricity only for a narrow temperature window (22 K), above and below which the polar phase transforms to a non-FE phase. The FE phase or ITP of HQReO4 should be stabilized in a much wider temperature range for practical applications. Here, to stabilize the FE phase (ITP) in a wider temperature range, highly oriented thin films of HQReO4 were prepared using a simple solution process. A slow evaporation method was adapted for drying the HQReO4 thin films to control the morphology and the temperature window. The temperature window of the intermediate temperature FE phase was successfully widened up to 35 K by merely varying the film drying temperature between 333 and 353 K. The strategy of stabilizing the FE phase in a wider temperature range can be adapted to other molecular FE materials to realize flexible electronic devices.


2021 ◽  
Vol 60 ◽  
pp. 351-359
Author(s):  
Qiuling Tao ◽  
Tian Lu ◽  
Ye Sheng ◽  
Long Li ◽  
Wencong Lu ◽  
...  

Author(s):  
Noor Zamin Khan ◽  
Sayed Ali Khan ◽  
Muhammad Sohail ◽  
M.A. Majeed Khan ◽  
Jahangeer Ahmed ◽  
...  

2021 ◽  
Vol 22 (8) ◽  
pp. 4126
Author(s):  
Sara De Vincentiis ◽  
Alessandro Falconieri ◽  
Frank Mickoleit ◽  
Valentina Cappello ◽  
Dirk Schüler ◽  
...  

Magnetosomes are membrane-enclosed iron oxide crystals biosynthesized by magnetotactic bacteria. As the biomineralization of bacterial magnetosomes can be genetically controlled, they have become promising nanomaterials for bionanotechnological applications. In the present paper, we explore a novel application of magnetosomes as nanotool for manipulating axonal outgrowth via stretch-growth (SG). SG refers to the process of stimulation of axonal outgrowth through the application of mechanical forces. Thanks to their superior magnetic properties, magnetosomes have been used to magnetize mouse hippocampal neurons in order to stretch axons under the application of magnetic fields. We found that magnetosomes are avidly internalized by cells. They adhere to the cell membrane, are quickly internalized, and slowly degrade after a few days from the internalization process. Our data show that bacterial magnetosomes are more efficient than synthetic iron oxide nanoparticles in stimulating axonal outgrowth via SG.


Sign in / Sign up

Export Citation Format

Share Document