The Influence of Gas-Filled Cells on Thermal Conductivity of Rigid Polyurethane Foam

Author(s):  
F. KAHLENBERG
BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6080-6094
Author(s):  
Muhammed Said Fidan ◽  
Murat Ertaş

The procedure for the liquefaction of apricot stone shells was reported in Part 1. Part 2 of this work determines the morphological, mechanical, and thermal properties of the bio-based rigid polyurethane foam composites (RPUFc). In this study, the thermal conductivity, compressive strength, compressive modulus, thermogravimetric analysis, flammability tests (horizontal burning and limited oxygen index (LOI)) in the flame retardants), and scanning electron microscope (SEM) (cell diameter in the SEM) tests of the RPUFc were performed and compared with control samples. The results showed the thermal conductivity (0.0342 to 0.0362 mW/mK), compressive strength (10.5 to 14.9 kPa), compressive modulus (179.9 to 180.3 kPa), decomposition and residue in the thermogravimetric analysis (230 to 491 °C, 15.31 to 21.61%), UL-94 and LOI in the flame retardants (539.5 to 591.1 mm/min, 17.8 to 18.5%), and cell diameter in the SEM (50.6 to 347.5 μm) of RPUFc attained from liquefied biomass. The results were similar to those of foams obtained from industrial RPUFs, and demonstrated that bio-based RPUFc obtained from liquefied apricot stone shells could be used as a reinforcement filler in the preparation of RPUFs, specifically in construction and insulation materials. Moreover, liquefied apricot stone shell products have potential to be fabricated into rigid polyurethane foam composites.


2001 ◽  
Vol 37 (4) ◽  
pp. 310-332 ◽  
Author(s):  
Wei-Han Tao ◽  
Hung-Che Hsu ◽  
Chih-Chen Chang ◽  
Chuan-Liang Hsu ◽  
Yung-Sen Lin

2016 ◽  
Vol 678 ◽  
pp. 88-98 ◽  
Author(s):  
Harpal Singh

Rigid polyurethane foam (RPUF) is typically prepared by the reaction of an isocyanate, such as methyl diphenyl diisocyanate (MDI) with a polyol blend. During the polymerization reaction, a blowing agent expands the reacting mixture. The finished product is a solid, cellular polymer with a high thermal resistance. RPUF is an outstanding material for different applications. It has many desirable properties such as low thermal conductivity, low density, low water absorption, low moisture permeability, excellent dimensional stability, high strength to weight ratio. So, it is the best insulating material for industrial buildings, cold storages, telecom and defense shelters due to low thermal conductivity, low density, low moisture permeability and high porosity. It works to reduce heating and cooling loss, improving the efficiency of the building envelope. Thus, RPUF insulation in building envelopes brings additional benefits in energy savings, resulting in lower energy bills and protecting the environment by cutting CO2 emissions.


2017 ◽  
Vol 24 (1) ◽  
pp. 100-114 ◽  
Author(s):  
Hyeonwon Jeong ◽  
W. Jaewoo Shim

Abstract Recently, a new type of LNG tank named “KC-1 membrane LNG tank” has been developed by Korean Gas Corporation (KOGAS), and Samsung Heavy Industries (SHI) is currently building KC-1 membrane type LNG carriers. Unlike other LNG tanks, the KC-1 membrane LNG tank has a single-insulation structure rather than a double-insulation structure. For a given tank’s boundary condition, heat transfer analysis is performed from the external to the internal environment of the LNG tank by numerical simulation for three tanks. In each tank, the main thermally resistant layer of insulation is assembled with a High density rigid Polyurethane Foam (H-PUF), which is blown with one of three different types of hydrofluorocarbons-namely-HFC-365mfc, 245fa, and 245fa-e (enhanced). Advantage of such blowing agents is that it has a lower Ozone Depletion Potential (ODP) than HCFC-141b or carbon dioxide (CO2) that has been used in the past as well as having low thermal conductivity. A Reduced Order Model is utilized to a 3-dimensional section of the insulation to calculate equivalent thermal conductivity. The equivalent thermal conductivity of the insulation is then applied to the rest of LNG tank, reducing the size of tank simulation domain as well as computation time. Tank’s two external and internal boundary conditions used are those defined by the International Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC) and the United States Coast Guard (USCG) conditions. Boil-off Rate (BOR) of the tank that has the insulation with H-PUF blown with HFC-245fa resulted in 0.0927 %/day and 0.0745 %/day for IGC and USCG conditions, respectively.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5475
Author(s):  
Agnė Kairytė ◽  
Sylwia Członka ◽  
Renata Boris ◽  
Sigitas Vėjelis

In the current study, rigid polyurethane foam (PUR) was modified with 10–30 wt.% sunflower press cake (SFP) filler, and its effect on performance characteristics—i.e., rheology, characteristic foaming times, apparent density, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, and short-term water absorption by partial immersion—was evaluated. Microstructural and statistical analyses were implemented as well. During the study, it was determined that 10–20 wt.% SFP filler showed the greatest positive impact. For instance, the thermal conductivity value improved by 9% and 17%, respectively, while mechanical performance, i.e., compressive strength, increased by 11% and 28% in the perpendicular direction and by 43% and 67% in the parallel direction. Moreover, tensile strength showed 49% and 61% increments, respectively, at 10 wt.% and 20 wt.% SFP filler. Most importantly, SFP filler-modified PUR foams were characterised by two times lower water absorption values and improved microstructures with a reduced average cell size and increased content in closed cells.


2012 ◽  
Vol 562-564 ◽  
pp. 385-389
Author(s):  
Ming Ming Cheng ◽  
Fei Wang ◽  
Lin Jing Ma ◽  
Chao Fan

Rigid polyurethane foam has many advantages such as low thermal conductivity, good thermal insulation, good antisepsis ability, non-toxic, and light quality. Based on the above reasons, this paper systematically summarized the processing technologies of rigid polyurethane foam, and research progress of its reinforced technology by inorganic materials was briefly discussed.


2021 ◽  
Vol 57 (4) ◽  
pp. 275-285
Author(s):  
Xiaohua Gu ◽  
Hongxiang Luo ◽  
Ke Xv ◽  
Wenxiang Qiu ◽  
Peng Chen

The preparation of polyether polyols from waste rigid polyurethane foam has been achieved by chemical degradation of ethylene glycol and diethylene glycol as the degradation agent. Then, the modified rigid polyurethane foam was prepared by polyether polyols and glass fiber. To detect the characteristic of rigid polyurethane foam, the density, water absorption, compressive strength, thermal conductivity, infrared spectrum, morphology structure had been tested. Finally, the best degradation formula was explored, and the modified rigid polyurethane foam had been prepared from the recycled polyol.


Sign in / Sign up

Export Citation Format

Share Document