scholarly journals Evaluation of the Performance of Bio-Based Rigid Polyurethane Foam with High Amounts of Sunflower Press Cake Particles

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5475
Author(s):  
Agnė Kairytė ◽  
Sylwia Członka ◽  
Renata Boris ◽  
Sigitas Vėjelis

In the current study, rigid polyurethane foam (PUR) was modified with 10–30 wt.% sunflower press cake (SFP) filler, and its effect on performance characteristics—i.e., rheology, characteristic foaming times, apparent density, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, and short-term water absorption by partial immersion—was evaluated. Microstructural and statistical analyses were implemented as well. During the study, it was determined that 10–20 wt.% SFP filler showed the greatest positive impact. For instance, the thermal conductivity value improved by 9% and 17%, respectively, while mechanical performance, i.e., compressive strength, increased by 11% and 28% in the perpendicular direction and by 43% and 67% in the parallel direction. Moreover, tensile strength showed 49% and 61% increments, respectively, at 10 wt.% and 20 wt.% SFP filler. Most importantly, SFP filler-modified PUR foams were characterised by two times lower water absorption values and improved microstructures with a reduced average cell size and increased content in closed cells.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5351
Author(s):  
Agnė Kairytė ◽  
Sylwia Członka ◽  
Renata Boris ◽  
Sigitas Vėjelis

The study analyses rigid polyurethane (PUR) foam modified with 10–30 wt.% sunflower press cake (SFP) and liquid glass-impregnated sunflower press cake (LG-SFP) particles and their impact on performance characteristics of PUR foams—foaming behaviour, rheology, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, dimensional stability, short-term water absorption by partial immersion, and thermal stability. Even though the dynamic viscosity and apparent density were increased for SFP and LG-SFP formulations, thermal conductivity values improved by 17% and 10%, respectively, when 30 wt.% of particles were incorporated. The addition of SFP and LG-SFP particles resulted in the formation of more structurally and dimensionally stable PUR foams with a smaller average cell size and a greater content of closed cells. At 30 wt.% of SFP and LG-SFP particles, compressive strength increased by 114% and 46% in the perpendicular direction, respectively, and by 71% and 67% in the parallel direction, respectively, while tensile strength showed an 89% and 85% higher performance at 30 wt.% SFP and LG-SFP particles loading. Furthermore, short-term water absorption for all SFP and LG-SFP modified PUR foam formulations was almost two times lower compared to the control foam. SFP particles reduced the thermal stability of modified PUR foams, but LG-SFP particles shifted the thermal decomposition temperatures towards higher ones.


2021 ◽  
Vol 57 (4) ◽  
pp. 275-285
Author(s):  
Xiaohua Gu ◽  
Hongxiang Luo ◽  
Ke Xv ◽  
Wenxiang Qiu ◽  
Peng Chen

The preparation of polyether polyols from waste rigid polyurethane foam has been achieved by chemical degradation of ethylene glycol and diethylene glycol as the degradation agent. Then, the modified rigid polyurethane foam was prepared by polyether polyols and glass fiber. To detect the characteristic of rigid polyurethane foam, the density, water absorption, compressive strength, thermal conductivity, infrared spectrum, morphology structure had been tested. Finally, the best degradation formula was explored, and the modified rigid polyurethane foam had been prepared from the recycled polyol.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6080-6094
Author(s):  
Muhammed Said Fidan ◽  
Murat Ertaş

The procedure for the liquefaction of apricot stone shells was reported in Part 1. Part 2 of this work determines the morphological, mechanical, and thermal properties of the bio-based rigid polyurethane foam composites (RPUFc). In this study, the thermal conductivity, compressive strength, compressive modulus, thermogravimetric analysis, flammability tests (horizontal burning and limited oxygen index (LOI)) in the flame retardants), and scanning electron microscope (SEM) (cell diameter in the SEM) tests of the RPUFc were performed and compared with control samples. The results showed the thermal conductivity (0.0342 to 0.0362 mW/mK), compressive strength (10.5 to 14.9 kPa), compressive modulus (179.9 to 180.3 kPa), decomposition and residue in the thermogravimetric analysis (230 to 491 °C, 15.31 to 21.61%), UL-94 and LOI in the flame retardants (539.5 to 591.1 mm/min, 17.8 to 18.5%), and cell diameter in the SEM (50.6 to 347.5 μm) of RPUFc attained from liquefied biomass. The results were similar to those of foams obtained from industrial RPUFs, and demonstrated that bio-based RPUFc obtained from liquefied apricot stone shells could be used as a reinforcement filler in the preparation of RPUFs, specifically in construction and insulation materials. Moreover, liquefied apricot stone shell products have potential to be fabricated into rigid polyurethane foam composites.


2007 ◽  
Vol 26 (4) ◽  
pp. 245-259 ◽  
Author(s):  
M. Thirumal ◽  
Dipak Khastgir ◽  
Nikhil K Singha ◽  
B.S. Manjunath ◽  
Y.P. Naik

Rigid polyurethane foam (PUF) having different fillers such as precipitated silica (SiO2), precipitated calcium carbonate (CaCO3) and glass powder (GP) were prepared by blowing with distilled water. The effect of filler loading on different properties of PUF was studied. In this investigation, the filler content was varied from 5 to 50 parts per hundred of polyol (phr) by weight. The properties such as density, mechanical, morphological, water absorption, thermal conductivity and thermal properties of the filled PUF were compared with the neat PUF. The density of silica filled PUF decreases with an increase in the filler loading. In case of calcium carbonate and glass powder the density initially decreases with filler loading, but after a certain concentration of fillers there is an increase in density with filler content. The mechanical properties such as compressive stress at 10% strain, compressive modulus and hardness of the filled PUF decrease in comparison with the neat PUF, due to the reaction between isocyanate and surface functional group present in filler. In all cases, the water absorption of the PUF increases with the increase in filler loading, due to the decrease in the closed cell content. The thermal conductivity analysis of PUF shows that the insulation properties decrease with the increase in silica as well as CaCO3 loading. This is mainly due to formation of open and damaged cell structure. However, when glass powder is used as filler the thermal conductivity first decreases, but later increases with filler loading.


2016 ◽  
Vol 8 (3) ◽  
pp. 101-107 ◽  
Author(s):  
Agnė Kairytė ◽  
Saulius Vaitkus ◽  
Giedrius Balčiūnas

Presently, researches regarding green chemistry are conducted due to its significance for the mitigation of environmental problems, particularly those related to carbon dioxide emissions in relation to global warming and the usage of fossil feedstocks not only for energy generation but also for materials production. The study examines the impact of bio-products such as corn starch, rapeseed glycerin as well as petroleum based propylene glycol as bifunctional and trifunctional chain extenders on physical-mechanical properties of polyurethane foam from rapeseed oil polyol derived via chemo-enzymatic route. The obtained foams were characterized using European and international methodologies for determination of density, compressive strength perpendicular and parallel to foaming directions, thermal conductivity, long-term water absorption after 28 days of immersion, closed cell content and cell size. Foams containing (5–25) pphp of corn starch display significantly lower values in density and compressive strength as well as cell size compared to the neat polyurethane foam. The greatest compressive strength and the lowest thermal conductivity are obtained for foams with 25 pphp of rapeseed glycerin. All foams extended with bio-products and propylene glycol are characterized by the higher long-term water absorption compared to that of the neat polyurethane foam.


Author(s):  
Apised Suwansaard

When polystyrene (PS) and hemp fiber waste were mixed into the sand aggregate, some physical-mechanical properties of mortar changed. The PS and hemp fiber were tested as partial replacements for sand in mortar with three designated percentages of 2.5, 5.0 and 10.0% by mass. The properties of mortar with PS were found to be better than that of the mortar with hemp fiber. The water absorption of mortar with PS was comparable with the reference mortar but lower than that of mortar with hemp fiber. The compressive strength of the mortar with PS was higher than that with hemp fiber whereas the tensile strength of the mortar with 2.5% PS and hemp fiber was comparable and was higher than that of the reference mortar. The thermal conductivity of a wall plastered by mortar containing PS decreased as the PS content was increased, whereas the thermal conductivity of a wall plastered by mortar containing hemp fiber increased as the hemp fiber content was increased. Thick crack was detected in the reference wall while hair line crack occurred from the wall plastered with PS and hemp fiber mortars. The results indicated that 10.0% PS could be used as a partial replacement for sand in mortar with an improvement in some of the properties of the mortar.


2021 ◽  
Vol 16 (2) ◽  
pp. 189-201
Author(s):  
Kechkar Chiraz ◽  
Benamara F. Zohra ◽  
Nigri Ghania ◽  
Hebhoub Houria ◽  
Cherait Yacine ◽  
...  

Abstract The work presented in this paper aims to study the durability of mortars, in which part of the sand has been replaced with rubber aggregates from used tires and have undergone a surface treatment with a sodium hydroxide solution (NaOH). The substitution rates studied are 10%, 17.5%, and 25%. The results are compared with ordinary mortar and mortars with untreated rubber aggregates while samples with the same substitution rates were used. To do this, the following properties have been studied: compressive strength, flexural tensile strength, water absorption by capillarity, water absorption by total immersion, water-accessible porosity, water permeability, and resistance to the chemical degradation by sulfuric acid H2SO4. The results obtained show that the treatment of rubber aggregates by the solution method (NaOH) presented a considerable improvement in mechanical performance (increase in compressive strength and flexural tensile strength) and better durability compared to reference mortar and mortar with untreated rubber granulate.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Alloy Digest ◽  
2020 ◽  
Vol 69 (11) ◽  

Abstract Meehanite GB300 is a pearlitic gray cast iron that has a minimum tensile strength of 300 MPa (44 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. This grade exhibits high strength while still maintaining good thermal conductivity and good machinability. It is generally used for applications where the thermal conductivity requirements preclude the use of other higher-strength materials, such as spheroidal graphite cast irons, which have inferior thermal properties. This datasheet provides information on physical properties, hardness, tensile properties, and compressive strength as well as fatigue. It also includes information on low and high temperature performance as well as heat treating, machining, and joining. Filing Code: CI-75. Producer or source: Meehanite Metal Corporation.


2008 ◽  
Vol 1 (2) ◽  
pp. 113-120 ◽  
Author(s):  
A. C. Marques ◽  
J. L. Akasaki ◽  
A. P. M. Trigo ◽  
M. L. Marques

In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume). It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.


Sign in / Sign up

Export Citation Format

Share Document