DESIGN OF BUILT ENVIRONMENT TO MINIMIZE ITS ENERGY DEMAND (PEDESTRIAN ORIENTED LAYOUT FOR THE ENERGY CONSERVATION)

Author(s):  
Farhat K. Tashkandi

Electricity demand in India is increasing at a rapid pace because of growth in Economy, urbanization, infrastructure development and the living standard of people. According to the United Nation’s world population prospects (2017), India’s population is 1.34 billion which will go grow further and surpass China by 2025[1]. According to the IMF, the Indian economy is expected to grow by 7.5% in FY19-20 and 7.7% in FY20-21[2]. Increased population and growth in GDP are associated with increased energy demand. India’s primary energy consumption was 754 Mtoe in 2017 and expected to reach 1928 Mtoe in 2040[3]. Major energy demand is from the Industrial sector which was 51% of total primary energy consumption in 2017 and expected to reach 990 Mtoe, by 2040 [3]. Rising energy demand and dependence on coal-based energy generation capacity, leading to the emission of Green House Gases (GHG). Most of India’s Greenhouse gas emissions are from energy sector having 68.7% contribution in overall greenhouse gas emission. Agriculture, Industrial process land-use change and forestry (LUCF), and waste, contributed 6.0%, 3.8% and 1.9% respectively in overall GHG emission in 2014. [4]. Reducing the GHG emission in India is a major challenge in front of the Government as the Government has to maintain sustainable growth with the contribution in mitigating the effect of climate change. Govt. has pledged to Paris Agreement for the reduction in emission intensity of GDP by 33-35% by 2030 below 2005 level [5]. In the reduction of GHG emission, energy efficiency's contribution is estimated at approx. 51% [6]. The industrial sector can contribute most in reducing GHG emission and contributes to nationally determined contribution. Industry consumes 40%-45% of total energy consumption and motor-driven system consumes 70% [7] of total Industrial energy. Most of the energy in Industries are consumed to run the motor for various purposes and consumes a major chunk of energy which can be reduced to a significant level by replacing the standard motor with energy efficient motor. 90% of the motor in Indian industries are IE1 or below IE1 standard [8] and required replacement. By installing the energy efficient motor, the industry can save huge energy, cost and reduce CO2 emission. Observing the opportunity for energy saving by energy efficient motor, this paper aims to analyze how energy efficient motor is capable of reducing energy consumption, and how it can contribute to energy conservation. Methodology adopted in this paper is secondary research, that answers to questions like; why Industry need energy efficient motor, how energy efficient motor can save energy and increases efficiency, cost-benefit analysis of installing energy efficient motor, barriers to the installation of energy efficient motor and solution to those barriers in migration from the standard motor to energy efficient motor in India.


Author(s):  
Wim Zeiler ◽  
Gert Boxem ◽  
Rinus van Houten ◽  
Joep van der Velden ◽  
Willem Wortel ◽  
...  

In Europe comfort in buildings needs 40% of the total energy. With effects of Global warming becoming more and more apparent there is a need to reduce this energy demand by comfort within the built environment. In comfort control strategy there is an exciting development based on inclusive design: the user’s preferences and their behaviour have become central in the building services control strategy. Synergy between end-user and building is the ultimate in the intelligent comfort control concept. This new comfort control technology is based on the use of agent technology and can further reduce energy consumption of buildings while at the same time improve individual comfort. The TU/e (Technische Universiteit Eindhoven) together with Kropman and ECN (Energy research Centre Netherlands) work together in the research for user based preference indoor climate control technology. Central in this approach is the user focus of the whole building design process which makes it possible to reduce energy consumption by tuning demand and supply of the energy needed to fulfill the comfort demand of the occupants building.


Facilities ◽  
2019 ◽  
Vol 37 (13/14) ◽  
pp. 1066-1081
Author(s):  
Low Sheau-Ting ◽  
Mastura Mohd Basri Baharan ◽  
Choong Weng-Wai ◽  
Wee Siaw-Chui

Purpose The purpose of this paper is to identify the preferred communication channels to foster energy conservation behaviour among office building users. Energy demand from the commercial sector in Malaysia is, at 33.2 per cent, the highest after the industry sector, at 45.1 per cent. The country’s progress in actively practising energy conservation is lacking, despite various energy conservation programmes having been launched in recent years. A large amount of energy is wasted by users’ poor energy conservation behaviour. To market voluntary energy conservation behaviour, the delivery of energy conservation messages using the appropriate communication channels remains an important strategy. Design/methodology/approach This paper involves two-stage data collection. The communication categories associated with a set of channels identified from expert interview serve as the basis for the second stage of empirical data gathering using conjoint analysis. A choice-based conjoint analysis assisted by Sawtooth Software is used to analyse the 525 usable empirical data gathered from a final questionnaire survey among the office building users in Malaysia. Findings This paper has identified five communication categories associated with a total of 19 channels. The mass media is acknowledged as the most preferred communication channel among office building users in the marketing of energy conservation behaviour, while the least preferred channel to communicate energy conservation information is audio-visual media. Originality/value This study contributes to existing literature with a novel case in Malaysia office building by identifying the preferred combination of communication channels in fostering energy conservation behaviour. The findings could benefit the building managers in marketing energy conservation behaviour among office building users to effectively achieve the desired change for sustainable development.


Author(s):  
Balaji Kumar

Abstract The research collection aims at finding the various possible opportunities for the effective integration of shallow geothermal energy (SGE) to decrease the energy demand in the built environment and to reduce emission associated with it. The integration of SGE with heat pump using pipe network is extensively reviewed. The open loop and closed loop (vertical, horizontal, energy piles) pipe networks are the most common type of ground heat exchanging methods. The objective of the review is to improve the heat exchanger effectiveness through various design aspects according to the local climatic conditions. This comprehensive review part II contains the research details pertaining to the last two decades about ground heat exchangers (geometrical aspects, borehole material, grout material, thermal response test, analytical and numerical models). Also, the factors influencing the ground heat exchanger's performance such as heat transfer fluid, groundwater flow, and soil properties are discussed in detail. This paper highlights the recent research findings and a potential gap in the ground heat exchanger.


2020 ◽  
Vol 10 (12) ◽  
pp. 4188 ◽  
Author(s):  
Chuan-Rui Yu ◽  
Han-Sen Guo ◽  
Qian-Cheng Wang ◽  
Rui-Dong Chang

Environmental concerns and growing energy costs raise the importance of sustainable development and energy conservation. The building sector accounts for a significant portion of total energy consumption. Passive cooling techniques provide a promising and cost-efficient solution to reducing the energy demand of buildings. Based on a typical residential case in Hong Kong, this study aims to analyze the integration of various passive cooling techniques on annual and hourly building energy demand with whole building simulation. The results indicate that infiltration and insulation improvement are effective in regard to energy conservation in buildings, while the effectiveness of variations in building orientation, increasing natural ventilation rate, and phase change materials (PCM) are less significant. The findings will be helpful in the passive house standard development in Hong Kong and contribute to the further optimization work to realize both energy efficiency and favorably built environments in residential buildings.


Sign in / Sign up

Export Citation Format

Share Document