Satellite Cell Self-Renewal

Author(s):  
Lorenzo Giordani ◽  
Alice Parisi ◽  
Fabien Le Grand
Keyword(s):  
2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 104-105
Author(s):  
Shihuan Kuang ◽  
Feng Yue ◽  
Stephanie Oprescu

Abstract Single Cell RNA-sequencing (scRNA-seq) is a powerful technique to deconvolute gene expression of various subset of cells intermingled within a complex tissue, such as the skeletal muscle. We first used scRNA-seq to understand dynamics of cell populations and their gene expression during muscle regeneration in murine limb muscles. This leads to the identification of a subset of satellite cells (the resident stem cells of skeletal muscles) with immune gene signatures in regenerating muscles. Next, we used scRNA-seq to examine gene expression dynamics of satellite cells at various status: quiescence, activation, proliferation, differentiation and self-renewal. This analysis uncovers stage-dependent changes in expression of genes related to lipid metabolism. Further analyses lead to the discovery of previously unappreciated dynamics of lipid droplets in satellite cells; and demonstrate that the abundance of the lipid droplets in newly divided satellite daughter cells is linked to cell fate segregation into differentiation versus self-renewal. Perturbation of lipid droplet dynamics through blocking lipolysis disrupts cell fate homeostasis and impairs muscle regeneration. Finally, we show that lipid metabolism regulates the function of satellite cells through two mechanisms. On one hand, lipid metabolism functions as an energy source through fatty acid oxidation (FAO), and blockage of FAO reduces energy production that is critical for satellite cell function. On the other hand, lipid metabolism generates bioactive molecules that influence signaling transduction and gene expression. In this scenario, lipid metabolism and FAO regulate the intracellular levels of acetyl-coA and selective acetylation of PAX7, a pivotal transcriptional factor underlying function of satellite cells. These results together reveal for the first time a critical role of lipid metabolism and lipid droplet dynamics in muscle satellite cell fate determination and regenerative function; and underscore a potential role of dietary fatty acids in satellite cell-dependent muscle development, growth and regeneration.


Development ◽  
2012 ◽  
Vol 139 (16) ◽  
pp. 2857-2865 ◽  
Author(s):  
W. Liu ◽  
Y. Wen ◽  
P. Bi ◽  
X. Lai ◽  
X. S. Liu ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Rosa Maria Correra ◽  
David Ollitrault ◽  
Mariana Valente ◽  
Alessia Mazzola ◽  
Bjorn T. Adalsteinsson ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Gregory C. Addicks ◽  
Caroline E. Brun ◽  
Marie-Claude Sincennes ◽  
John Saber ◽  
Christopher J. Porter ◽  
...  

Abstract PAX7 is a paired-homeobox transcription factor that specifies the myogenic identity of muscle stem cells and acts as a nodal factor by stimulating proliferation while inhibiting differentiation. We previously found that PAX7 recruits the H3K4 methyltransferases MLL1/2 to epigenetically activate target genes. Here we report that in the absence of Mll1, myoblasts exhibit reduced H3K4me3 at both Pax7 and Myf5 promoters and reduced Pax7 and Myf5 expression. Mll1-deficient myoblasts fail to proliferate but retain their differentiation potential, while deletion of Mll2 had no discernable effect. Re-expression of PAX7 in committed Mll1 cKO myoblasts restored H3K4me3 enrichment at the Myf5 promoter and Myf5 expression. Deletion of Mll1 in satellite cells reduced satellite cell proliferation and self-renewal, and significantly impaired skeletal muscle regeneration. Pax7 expression was unaffected in quiescent satellite cells but was markedly downregulated following satellite cell activation. Therefore, MLL1 is required for PAX7 expression and satellite cell function in vivo. Furthermore, PAX7, but not MLL1, is required for Myf5 transcriptional activation in committed myoblasts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert W. Arpke ◽  
Ahmed S. Shams ◽  
Brittany C. Collins ◽  
Alexie A. Larson ◽  
Nguyen Lu ◽  
...  

Abstract Background Although muscle regenerative capacity declines with age, the extent to which this is due to satellite cell-intrinsic changes vs. environmental changes has been controversial. The majority of aging studies have investigated hindlimb locomotory muscles, principally the tibialis anterior, in caged sedentary mice, where those muscles are abnormally under-exercised. Methods We analyze satellite cell numbers in 8 muscle groups representing locomotory and non-locomotory muscles in young and 2-year-old mice and perform transplantation assays of low numbers of hind limb satellite cells from young and old mice. Results We find that satellite cell density does not decline significantly by 2 years of age in most muscles, and one muscle, the masseter, shows a modest but statistically significant increase in satellite cell density with age. The tibialis anterior and extensor digitorum longus were clear exceptions, showing significant declines. We quantify self-renewal using a transplantation assay. Dose dilution revealed significant non-linearity in self-renewal above a very low threshold, suggestive of competition between satellite cells for space within the pool. Assaying within the linear range, i.e., transplanting fewer than 1000 cells, revealed no evidence of decline in cell-autonomous self-renewal or regenerative potential of 2-year-old murine satellite cells. Conclusion These data demonstrate the value of comparative muscle analysis as opposed to overreliance on locomotory muscles, which are not used physiologically in aging sedentary mice, and suggest that self-renewal impairment with age is precipitously acquired at the geriatric stage, rather than being gradual over time, as previously thought.


Sign in / Sign up

Export Citation Format

Share Document