Cytoskeletal Contribution to Cell Stiffness Due to Osmotic Swelling; Extending the Donnan Equilibrium

Author(s):  
Pei-Chuan Chao ◽  
Mettupalayam Sivaselvan ◽  
Frederick Sachs
2021 ◽  
Vol 27 (S1) ◽  
pp. 500-502
Author(s):  
Oleg Suchalko ◽  
Roman Timoshenko ◽  
Alexander Vaneev ◽  
Vasilii Kolmogorov ◽  
Nikita Savin ◽  
...  

2021 ◽  
Vol 7 (7) ◽  
pp. eabd2711
Author(s):  
Jean-François Louf ◽  
Nancy B. Lu ◽  
Margaret G. O’Connell ◽  
H. Jeremy Cho ◽  
Sujit S. Datta

Hydrogels hold promise in agriculture as reservoirs of water in dry soil, potentially alleviating the burden of irrigation. However, confinement in soil can markedly reduce the ability of hydrogels to absorb water and swell, limiting their widespread adoption. Unfortunately, the underlying reason remains unknown. By directly visualizing the swelling of hydrogels confined in three-dimensional granular media, we demonstrate that the extent of hydrogel swelling is determined by the competition between the force exerted by the hydrogel due to osmotic swelling and the confining force transmitted by the surrounding grains. Furthermore, the medium can itself be restructured by hydrogel swelling, as set by the balance between the osmotic swelling force, the confining force, and intergrain friction. Together, our results provide quantitative principles to predict how hydrogels behave in confinement, potentially improving their use in agriculture as well as informing other applications such as oil recovery, construction, mechanobiology, and filtration.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1833
Author(s):  
Tsai-Tsen Liao ◽  
Wei-Chung Cheng ◽  
Chih-Yung Yang ◽  
Yin-Quan Chen ◽  
Shu-Han Su ◽  
...  

Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial–mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Andoni Garitano-Trojaola ◽  
Ana Sancho ◽  
Ralph Götz ◽  
Patrick Eiring ◽  
Susanne Walz ◽  
...  

AbstractThe presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD + AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD + AML.


Author(s):  
Adrien Bloch ◽  
Eli J. Rogers ◽  
Cynthia Nicolas ◽  
Tanguy Martin-Denavit ◽  
Miguel Monteiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document