substrate rigidity
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 22)

H-INDEX

27
(FIVE YEARS 3)

Biophysica ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 34-58
Author(s):  
Kuanpo Lin ◽  
Robert J. Asaro

Nascent adhesions (NAs) are a general precursor to the formation of focal adhesions (FAs) that provide a fundamental mechanism for cell adhesion that is, in turn, involved in cell proliferation, migration, and mechanotransduction. Nascent adhesions form when cells come into contact with substrates at all rigidities and generally involve the clustering of ligated integrins that may recruit un-ligated integrins. Nascent adhesions tend to take on characteristic sizes in the range of O(100nm–150nm) in diameter and tend to contain integrin numbers of O(20–60). The flexible, adaptable model we present provides and clear explanation of how these conserved cluster features come about. Our model is based on the interaction among ligated and un-ligated integrins that arise due to deformations that are induced in the cell membrane-cell glycocalyx and substrate system due to integrin activation and ligation. This model produces a clearly based interaction potential, and from it an explicit interaction force among integrins, that our stochastic diffusion-interaction simulations then show will produce nascent clusters with experimentally observed characteristics. Our simulations reveal effects of various key parameters related to integrin activation and ligation as well as some unexpected and previously unappreciated effects of parameters including integrin mobility and substrate rigidity. Moreover, the model’s structure is such that refinements are readily incorporated and specific suggestions are made as to what is required for further progress in understanding nascent clustering and the development of mature focal adhesions in a truly predictive manner.


2021 ◽  
Author(s):  
L&eacutea Pinon ◽  
Nicolas Ruyssen ◽  
Judith Pineau ◽  
Olivier Mesdjian ◽  
Damien Cuverlier ◽  
...  

The immune synapse is the tight contact zone between a lymphocyte and a cell presenting its cognate antigen. This structure serves as a signaling platform and entails a polarization of intra-cellular components, necessary to the immunological function of the cell. While the surface properties of the presenting cell are known to control the formation of the synapse, their impact on polarization has not yet been studied. Using functional lipid droplets as tunable artificial presenting cells combined with a microfluidic pairing device, we simultaneously observe synchronized synapses and dynamically quantify polarization patterns of individual B cells. By assessing how the ligand concentration, the surface fluidity and the substrate rigidity impact this polarization, we show that its onset depends on the antigen concentration at the synapse, and that the substrate rigidity controls both its onset and its kinetics. Our experimental system enables a fine phenotyping of monoclonal cell populations based on their synaptic readout.


Author(s):  
Ai Kia Yip ◽  
Songjing Zhang ◽  
Lor Huai Chong ◽  
Elsie Cheruba ◽  
Jessie Yong Xing Woon ◽  
...  

Focal adhesions (FAs) are specialized structures that enable cells to sense their extracellular matrix rigidity and transmit these signals to the interior of the cells, bringing about actin cytoskeleton reorganization, FA maturation, and cell migration. It is known that cells migrate towards regions of higher substrate rigidity, a phenomenon known as durotaxis. However, the underlying molecular mechanism of durotaxis and how different proteins in the FA are involved remain unclear. Zyxin is a component of the FA that has been implicated in connecting the actin cytoskeleton to the FA. We have found that knocking down zyxin impaired NIH3T3 fibroblast’s ability to sense and respond to changes in extracellular matrix in terms of their FA sizes, cell traction stress magnitudes and F-actin organization. Cell migration speed of zyxin knockdown fibroblasts was also independent of the underlying substrate rigidity, unlike wild type fibroblasts which migrated fastest at an intermediate substrate rigidity of 14 kPa. Wild type fibroblasts exhibited durotaxis by migrating toward regions of increasing substrate rigidity on polyacrylamide gels with substrate rigidity gradient, while zyxin knockdown fibroblasts did not exhibit durotaxis. Therefore, we propose zyxin as an essential protein that is required for rigidity sensing and durotaxis through modulating FA sizes, cell traction stress and F-actin organization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sayan Chakraborty ◽  
Divyaleka Sampath ◽  
Melissa Ong Yu Lin ◽  
Matthew Bilton ◽  
Cheng-Kuang Huang ◽  
...  

AbstractAn orchestrated wound healing program drives skin repair via collective epidermal cell proliferation and migration. However, the molecular determinants of the tissue microenvironment supporting wound healing remain poorly understood. Herein we discover that proteoglycan Agrin is enriched within the early wound-microenvironment and is indispensable for efficient healing. Agrin enhances the mechanoperception of keratinocytes by augmenting their stiffness, traction stress and fluidic velocity fields in retaliation to bulk substrate rigidity. Importantly, Agrin overhauls cytoskeletal architecture via enhancing actomyosin cables upon sensing geometric stress and force following an injury. Moreover, we identify Matrix Metalloproteinase-12 (MMP12) as a downstream effector of Agrin’s mechanoperception. We also reveal a promising potential of a recombinant Agrin fragment as a bio-additive material that assimilates optimal mechanobiological and pro-angiogenic parameters by engaging MMP12 in accelerated wound healing. Together, we propose that Agrin-MMP12 pathway integrates a broad range of mechanical stimuli to coordinate a competent skin wound healing niche.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jacopo Di Russo ◽  
Jennifer L Young ◽  
Julian WR Wegner ◽  
Timmy Steins ◽  
Horst Kessler ◽  
...  

Nanometer-scale properties of the extracellular matrix influence many biological processes, including cell motility. While much information is available for single-cell migration, to date, no knowledge exists on how the nanoscale presentation of extracellular matrix receptors influences collective cell migration. In wound healing, basal keratinocytes collectively migrate on a fibronectin-rich provisional basement membrane to re-epithelialize the injured skin. Among other receptors, the fibronectin receptor integrin α5β1 plays a pivotal role in this process. Using a highly specific integrin α5β1 peptidomimetic combined with nanopatterned hydrogels, we show that keratinocyte sheets regulate their migration ability at an optimal integrin α5β1 nanospacing. This efficiency relies on the effective propagation of stresses within the cell monolayer independent of substrate stiffness. For the first time, this work highlights the importance of extracellular matrix receptor nanoscale organization required for efficient tissue regeneration.


2021 ◽  
Author(s):  
Matthias D Koch ◽  
Endao Han ◽  
Joshua W. Shaevitz ◽  
Zemer Gitai

The ability of eukaryotic cells to differentiate substrate stiffness is fundamental for many processes such as the development of stem cells into mature tissue. Here, we establish that bacteria feel their microenvironment in a similar manner. We show that Pseudomonas aeruginosa actively probes and measures substrate stiffness using type IV pili (TFP). The activity of the major virulence factor regulator Vfr is peaked with stiffness in a physiologically important range between 0.1 kPa (mucus) and 1000 kPa (cartilage). The local concentration of PilA at the base of dynamic TFP changes during extension and retraction in a surface dependent manner due to slow PilA diffusion in the cell membrane. Traction force measurements reveal that TFP retraction deforms even stiff substrates. Modeling of the measured substrate deformation and optical tweezers experiments suggest that TFP adhere at the tip only. Informed by these experimental results, we developed a model that describes substrate stiffness dependent dynamics of the polar PilA concentration which are quantitatively consistent with the transcriptional response to stiffness. Manipulating the ATPase activity of the TFP motors changes the TFP extension and retraction velocities and consequently the PilA concentration dynamics in a manner that is predictive of the experimental stiffness response. This work points to the use of a competition between PilA diffusion and TFP extension-retraction as a molecular shear rheometer. Our results highlight that stiffness sensing is a conserved property between the kingdoms of life.


2021 ◽  
Author(s):  
Jason KH Lai ◽  
Pearlyn JY Toh ◽  
Hamizah A Cognart ◽  
Geetika Chouhan ◽  
Timothy E Saunders

In a previous study, it was reported that Yap1 and Wwtr1 in zebrafish regulates the morphogenesis of the posterior body and epidermal fin fold (Kimelman, D., et al. 2017). We report here that DNA damage induces apoptosis of epidermal basal cells (EBCs) in zebrafish yap1-/-;wwtr1-/- embryos. Specifically, these mutant EBCs exhibit active Caspase-3, Caspase-8 and γH2AX, consistent with DNA damage serving as a stimulus of the extrinsic apoptotic pathway in epidermal cells. Live imaging of zebrafish epidermal cells reveals a steady growth of basal cell size in the developing embryo, but this growth is inhibited in mutant basal cells followed by apoptosis, leading to the hypothesis that factors underscoring cell size play a role in this DNA damage-induced apoptosis phenotype. We tested two of these factors using cell stretching and substrate stiffness assays, and found that HaCaT cells cultured on stiff substrates exhibit more numerous γH2AX foci compared to ones cultured on soft substrates. Thus, we propose that substrate rigidity modulates genomic stress in the developing epidermal cell, and that Yap1 and Wwtr1 are required for its survival.


2021 ◽  
Author(s):  
Partho Sakha De ◽  
Rumi De

AbstractThe transmission of cytoskeletal forces to the extracellular matrix through focal adhesion complexes is essential for a multitude of biological processes such as cell migration, differentiation, tissue development, cancer progression, among others. During migration, focal adhesions arrest the actin retrograde flow towards the cell interior, allowing the cell front to move forward. Here, we address a puzzling observation of the existence of two distinct phenomena: a biphasic relationship of the retrograde flow and cell traction force with increasing substrate rigidity, with maximum traction force and minimum retrograde flow velocity being present at an optimal substrate stiffness; in contrast, a monotonic relationship between them where the retrograde flow decreases and traction force increases with substrate stiffness. We propose a theoretical model for cell-matrix adhesions at the leading edge of a migrating cell, incorporating a novel approach in force loading rate sensitive binding and reinforcement of focal adhesions assembly and the subsequent force-induced slowing down of actin flow. Our model unravels both biphasic and monotonic responses of the retrograde flow and cell traction force with increasing substrate rigidity, owing to the cell’s ability to sense and adapt to the fast-growing forces. Moreover, we also elucidate how the viscoelastic properties of the substrate regulate these nonlinear responses and alter cellular behaviours.


2021 ◽  
Author(s):  
Jacopo Di Russo ◽  
Jennifer L. Young ◽  
Julian W. R. Wegner ◽  
Timmy Steins ◽  
Horst Kessler ◽  
...  

AbstractNanometer-scale properties of the extracellular matrix influence many biological processes, including cell motility. While much information is available for single cell migration, to date, no knowledge exists on how the nanoscale presentation of extracellular matrix receptors influences collective cell migration. In wound healing, basal keratinocytes collectively migrate on a fibronectin-rich provisional basement membrane to re-epithelialize the injured skin. Among other receptors, the fibronectin receptor integrin α5β1 plays a pivotal role in this process. Using a highly specific integrin α5β1 peptidomimetic combined with nanopatterned hydrogels, we show that keratinocyte sheets regulate their migration ability at an optimal integrin α5β1 nanospacing. This efficiency relies on the effective propagation of stresses within the cell monolayer independent of substrate stiffness. For the first time, this work highlights the importance of extracellular matrix receptor nanoscale organization required for efficient tissue regeneration.


2021 ◽  
Vol 7 (5) ◽  
pp. eabd6187
Author(s):  
Ana C. Laly ◽  
Kristina Sliogeryte ◽  
Oscar J. Pundel ◽  
Rosie Ross ◽  
Michael C. Keeling ◽  
...  

The keratin network of intermediate filaments provides keratinocytes with essential mechanical strength and resilience, but the contribution to mechanosensing remains poorly understood. Here, we investigated the role of the keratin cytoskeleton in the response to altered matrix rigidity. We found that keratinocytes adapted to increasing matrix stiffness by forming a rigid, interconnected network of keratin bundles, in conjunction with F-actin stress fiber formation and increased cell stiffness. Disruption of keratin stability by overexpression of the dominant keratin 14 mutation R416P inhibited the normal mechanical response to substrate rigidity, reducing F-actin stress fibers and cell stiffness. The R416P mutation also impaired mechanotransduction to the nuclear lamina, which mediated stiffness-dependent chromatin remodeling. By contrast, depletion of the cytolinker plectin had the opposite effect and promoted increased mechanoresponsiveness and up-regulation of lamin A/C. Together, these results demonstrate that the keratin cytoskeleton plays a key role in matrix rigidity sensing and downstream signal transduction.


Sign in / Sign up

Export Citation Format

Share Document