scholarly journals Single-Molecule Methods for Nucleotide Excision Repair: Building a System to Watch Repair in Real Time

Author(s):  
Muwen Kong ◽  
Emily C. Beckwitt ◽  
Luke Springall ◽  
Neil M. Kad ◽  
Bennett Van Houten
2020 ◽  
Vol 48 (22) ◽  
pp. 12689-12696
Author(s):  
Jamie T Barnett ◽  
Jochen Kuper ◽  
Wolfgang Koelmel ◽  
Caroline Kisker ◽  
Neil M Kad

Abstract Nucleotide excision repair (NER) in eukaryotes is orchestrated by the core form of the general transcription factor TFIIH, containing the helicases XPB, XPD and five ‘structural’ subunits, p62, p44, p34, p52 and p8. Recent cryo-EM structures show that p62 makes extensive contacts with p44 and in part occupies XPD’s DNA binding site. While p44 is known to regulate the helicase activity of XPD during NER, p62 is thought to be purely structural. Here, using helicase and adenosine triphosphatase assays we show that a complex containing p44 and p62 enhances XPD’s affinity for dsDNA 3-fold over p44 alone. Remarkably, the relative affinity is further increased to 60-fold by dsDNA damage. Direct binding studies show this preference derives from p44/p62’s high affinity (20 nM) for damaged ssDNA. Single molecule imaging of p44/p62 complexes without XPD reveals they bind to and randomly diffuse on DNA, however, in the presence of UV-induced DNA lesions these complexes stall. Combined with the analysis of a recent cryo-EM structure, we suggest that p44/p62 acts as a novel DNA-binding entity that enhances damage recognition in TFIIH. This revises our understanding of TFIIH and prompts investigation into the core subunits for an active role during DNA repair and/or transcription.


2017 ◽  
Vol 112 (3) ◽  
pp. 515a-516a
Author(s):  
Luke Springall ◽  
Michelle Simons ◽  
Craig D. Hughes ◽  
Bennet Van Houten ◽  
Neil M. Kad

2019 ◽  
Author(s):  
Han Ngoc Ho ◽  
Antoine van Oijen ◽  
Harshad Ghodke

Actively transcribed genes are preferentially repaired in a conserved repair reaction known as transcription-coupled nucleotide excision repair1–3. During this reaction, stalled transcription elongation complexes at sites of lesions serve as a signal to trigger the assembly of nucleotide excision repair factors (reviewed in ref.4,5). In the model organism Escherichia coli, the transcription-repair coupling factor Mfd displaces the stalled RNA polymerase and hands-off the stall site to the nucleotide excision repair factors UvrAB for damage detection6–9. Despite in vitro evidence, it remains unclear how in live cells the stall site is faithfully handed over to UvrB from RNA polymerase and whether this handoff occurs via the Mfd-UvrA2-UvrB complex or via alternate reaction intermediates. Here, we visualise Mfd, the central player of transcription-coupled repair in actively growing cells and determine the catalytic requirements for faithful completion of the handoff during transcription-coupled repair. We find that the Mfd-UvrA2 complex is arrested on DNA in the absence of UvrB. Further, Mfd-UvrA2-UvrB complexes formed by UvrB mutants deficient in DNA loading and damage recognition, were also impaired in successful handoff. Our observations demonstrate that in live cells, the dissociation of Mfd is tightly coupled to successful loading of UvrB, providing a mechanism via which loading of UvrB occurs in a strand-specific manner during transcription-coupled repair.


2019 ◽  
Author(s):  
Harshad Ghodke ◽  
Han Ngoc Ho ◽  
Antoine M van Oijen

AbstractIn the model organismEscherichia coli, helix distorting lesions are recognized by the UvrAB damage surveillance complex in the global genomic nucleotide excision repair pathway (GGR). Alternately, during transcription-coupled repair (TCR), UvrA is recruited to Mfd at sites of RNA polymerases stalled or paused by lesions. Ultimately, damage recognition is mediated by UvrA, culminating in the loading of the damage verification enzyme UvrB. We set out to characterize the differences in the kinetics of interactions of UvrA with Mfd and UvrB. We followed functional, fluorescently tagged UvrA molecules in live cells and measured their residence times in TCR-deficient or wild-type cells. We demonstrate that the lifetimes of UvrA in Mfd-dependent or Mfd-independent interactions in the absence of exogenous DNA damage are comparable in live cells, and are governed by UvrB. Upon UV irradiation, we found that the lifetimes of UvrA strongly depended on, and matched those of Mfd. Here, we illustrate a non-perturbative, imaging-based approach to quantify the kinetic signatures of damage recognition enzymes participating in multiple pathways in cells.


2019 ◽  
Author(s):  
JT Barnett ◽  
J Kuper ◽  
W Koelmel ◽  
C Kisker ◽  
NM Kad

AbstractNucleotide excision repair (NER) protects the genome following exposure to diverse types of DNA damage, including UV light and chemotherapeutics. Mutations in mammalian NER genes lead to diseases such as xeroderma pigmentosum, trichothiodystrophy, and Cockayne syndrome. In eukaryotes, the major transcription factor TFIIH is the central hub of NER. The core components of TFIIH include the helicases XPB, XPD, and five ‘structural’ subunits. Two of these structural TFIIH proteins, p44 and p62 remain relatively unstudied; p44 is known to regulate the helicase activity of XPD during NER whereas p62’s role is thought to be structural. However, a recent cryo-EM structure shows that p44, p62, and XPD make extensive contacts within TFIIH, with part of p62 occupying XPD’s DNA binding site. This observation implies a more extensive role in DNA repair beyond the structural integrity of TFIIH. Here, we show that p44 stimulates XPD’s ATPase but upon encountering DNA damage, further stimulation is only observed when p62 is part of the ternary complex; suggesting a role for the p44/p62 heterodimer in TFIIH’s mechanism of damage detection. Using single molecule imaging, we demonstrate that p44/p62 independently interacts with DNA; it is seen to diffuse, however, in the presence of UV-induced DNA lesions the complex stalls. Combined with the analysis of a recent cryo-EM structure we suggest that p44/p62 acts as a novel DNA-binding entity within TFIIH that is capable of recognizing DNA damage. This revises our understanding of TFIIH and prompts more extensive investigation into the core subunits for an active role during both DNA repair and transcription.


2021 ◽  
Vol 22 (2) ◽  
pp. 952
Author(s):  
Thanyalak Kraithong ◽  
Silas Hartley ◽  
David Jeruzalmi ◽  
Danaya Pakotiprapha

Double stranded DNA (dsDNA), the repository of genetic information in bacteria, archaea and eukaryotes, exhibits a surprising instability in the intracellular environment; this fragility is exacerbated by exogenous agents, such as ultraviolet radiation. To protect themselves against the severe consequences of DNA damage, cells have evolved at least six distinct DNA repair pathways. Here, we review recent key findings of studies aimed at understanding one of these pathways: bacterial nucleotide excision repair (NER). This pathway operates in two modes: a global genome repair (GGR) pathway and a pathway that closely interfaces with transcription by RNA polymerase called transcription-coupled repair (TCR). Below, we discuss the architecture of key proteins in bacterial NER and recent biochemical, structural and single-molecule studies that shed light on the lesion recognition steps of both the GGR and the TCR sub-pathways. Although a great deal has been learned about both of these sub-pathways, several important questions, including damage discrimination, roles of ATP and the orchestration of protein binding and conformation switching, remain to be addressed.


Sign in / Sign up

Export Citation Format

Share Document