The Stress Analysis of Pressure Vessels and Pressure Vessel Components

1970 ◽  
2014 ◽  
Vol 592-594 ◽  
pp. 1220-1224
Author(s):  
Navin Kumar ◽  
Surjit Angra ◽  
Vinod Kumar Mittal

Saddles are used to support the horizontal pressure vessels such as boiler drums or tanks. Since saddle is an integral part of the vessel, it should be designed in such a way that it can withstand the pressure vessel load while carrying liquid along with the operating weight. This paper presents the stress analysis of saddle support of a horizontal pressure vessel. A model of horizontal pressure vessel and saddle is created in Ansys software. For the given boundry and loading conditions, stresses induced in the saddle support are analyzed using Ansys software. After analysis it is found that maximum localized stress arises at the saddle to vessel interface near the saddle horn area. The results obtained shows that the saddle support design is safe for the given loading conditions and provides the theoretical basis for furthur optimisation.


Author(s):  
Yang-chun Deng ◽  
Gang Chen

To save material, the safety factor of pressure vessel design standards is gradually decreased from 5.0 to 2.4 in ASME Boiler and Pressure Vessel Codes. So the design methods of pressure vessel should be more rationalized. Considering effects of material strain hardening and non-linear structural deformation, the elastic-plastic stress analysis is the most suitable for pressure vessels design at present. This paper is based on elastic-plastic theory and considers material strain hardening and structural deformation effects. Elastic-plastic stress analyses of pressure vessels are summarized. Firstly, expressions of load and structural deformation relationship were introduced for thin-walled cylindrical and spherical vessels under internal pressure. Secondly, the plastic instability for thin-walled cylindrical and spherical vessels under internal pressure were analysed. Thirdly, to prevent pressure vessels from local failure, the ductile fracture strain of materials was discussed.


Author(s):  
Daniel Peters ◽  
Adam P. Maslowski

This paper is to give an overview of the major revisions pending in the upcoming 2015 edition of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (BPVC) Section VIII Division 3, Alternative Rules for Construction of High Pressure Vessels, and potential changes being considered by the Subgroup on High Pressure Vessels (SG-HPV) for future editions. This will include an overview of significant actions which will be included in the upcoming edition. This includes action relative to test locations in large and complex forgings, in response to a report from the U.S. Chemical Safety and Hazard Investigation Board (CSB) report of a failed vessel in Illinois. This will also include discussion of a long term issue recently completed on certification of rupture disk devices. Also included will be a discussion of a slight shift in philosophy which has resulted in the linear-elastic stress analysis section being moved to a Non-Mandatory Appendix and discussion of potential future of linear-elastic stress analysis in high pressure vessel design.


Author(s):  
Sung Kyu Ha ◽  
Stephen W. Tsai ◽  
Seong Jong Kim ◽  
Khazar Hayat ◽  
Kyo Kook Jin

A multi-scale fatigue life prediction methodology of composite pressure vessels subjected to multi-axial loading has been proposed in this paper. The multi-scale approach starts from the constituents, fiber, matrix and interface, leading to predict behavior of ply, laminates and eventually the composite structures. The life prediction methodology is composed of two steps: macro stress analysis and micro mechanics of failure based on fatigue analysis. In the macro stress analysis, multiaxial fatigue loading acting at laminate is determined from finite element analysis (FEM) of composite pressure vessel, and ply stresses are computed using a classical laminate theory (CLT). The micro-scale stresses are calculated in each constituent (i.e. matrix, interface, and fiber) from ply stresses using a micromechanical model. Micromechanics of failure (MMF) was originally developed to predict the strength of composites and now extended to prediction of fatigue life. Two methods are employed in predicting fatigue life of each constituent, i.e. an equivalent stress method for multi-axially loaded matrix, and a critical plane method for the interface. A modified Goodman diagram is used to take into account the generic mean stresses. Damages from each loading cycle are accumulated using Miner’s rule. Each fiber is assumed to follow a probabilistic failure depending on the length. Using the overall micro and macro models established in this study, Monte Carlo simulation has been performed to predict the overall fatigue life of a composite pressure vessel considering statistical distribution of material properties of each constituent and manufacturing winding helical angle.


1967 ◽  
Vol 89 (4) ◽  
pp. 858-868 ◽  
Author(s):  
A. G. Pickett ◽  
S. C. Grigory

The bases for ASME Boiler and Pressure Vessel Code, Section III, fatigue evaluation procedures, the fracture mechanics approach to fatigue life analysis, and the notch stress analysis method are reviewed. Fatigue life predictions are compared with the results of materials, model, and full size pressure vessel tests performed for PVRC and AEC. These tests were made in response to the research objectives established by ASME Special Committee to Review Code Stress Basis in 1958. A proposed design procedure based on the notch stress analysis method and experimental results is presented.


1992 ◽  
Vol 114 (1) ◽  
pp. 94-100 ◽  
Author(s):  
P. S. Huang ◽  
G. Zhu

Pressure vessels with wound-flat steel ribbons, also called ribbon-wound vessels, have excellent engineering and economic advantages and are widely used in the People’s Republic of China. A brief description of the structure and characteristics, and a comparison between the ribbon-wound technique with other methods are given. In this paper, a new mechanical model for the ribbons, in which the axial displacement and change of spiral angle are taken into account, is put forward. Then the universal formulas for the ribbon are obtained and a precise stress analysis of the vessel is presented. The spring effect of the ribbon layers has a great strengthening effect on the axial strength of the vessel and enables the vessel to support axial load. A formula for the spring effect is suggested. A comparison between theory and test is made, and the results are excellent.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Mingjue Zhou ◽  
Artik Patel ◽  
BoPing Wang ◽  
Weiya Jin ◽  
Yuebing Li

Abstract The design and verification of pressure vessels is governed by the design codes specified by the ASME Boiler and Pressure Vessel Code (BPVC). Convention design satisfying the ASME BPVC code requirements would lead to a conservative design. This situation will to be solvable by modern structural optimization methods. The size optimization of pressure vessel complying with design-by-analysis requirements within the ASME Sec. VIII Division 2 specification is discussed in this paper. This is accomplished by an integrated approach in which the stress analysis is carried out by ANSYS. These results are used by an optimization code in matlab to perform design optimization. The integrated approach is fully automated and applied to the optimal design of a real pressure vessel. The results show that the material used by the pressure vessel can be minimized while satisfying the maximum stress specified in the BPVC.


2008 ◽  
Vol 33-37 ◽  
pp. 109-114
Author(s):  
Ya Xin Zhang ◽  
Jun Ge Du ◽  
Chuan Mei Shi

The fatigue destruction is one way of expiration of pressure vessels, In order to avoid the accident occurring, it is extremely important to carry on the fatigue analysis to the pressure vessels. First, this article introduces the definition of fatigue destruction, the primary factors of affecting the fatigue expiration, and the advantages the analysis principle when the ANSYS finite element is applied to fatigue analysis; Then, this article carries on the stress analysis based on ANSYS software to the CNG storage gas pressure vessel, produces the stress distributed cloud chart, and gets the node number where is the maximum stress; Finally, This article carries on the fatigue analysis based on stress analysis result, the fatigue analysis demonstrates the CNG pressure vessel is effective in the establishment service life, Its fatigue accumulative damage coefficient is smaller than 1,Which explain it can satisfy the fatigue strength request.


Author(s):  
Erik Garrido ◽  
Euro Casanova

It is a regular practice in the oil industry to modify mechanical equipment to incorporate new technologies and to optimize production. In the case of pressure vessels, it is occasionally required to cut large openings in their walls in order to have access to the interior part of the equipment for executing modifications. This cutting process produces temporary loads, which were obviously not considered in the original mechanical design. Up to now, there is not a general purpose specification for approaching the assessments of stress levels once a large opening in a vertical pressure vessel has been made. Therefore stress distributions around large openings are analyzed on a case-by-case basis without a reference scheme. This work studies the distribution of the von Mises equivalent stresses around a large opening in FCC Regenerators during internal cyclone replacement, which is a frequently required practice for this kind of equipment. A finite element parametric model was developed in ANSYS, and both numerical results and illustrating figures are presented.


Author(s):  
Yian Wang ◽  
Guoshan Xie ◽  
Zheng Zhang ◽  
Xiaolong Qian ◽  
Yufeng Zhou ◽  
...  

Temper embrittlement is a common damage mechanism of pressure vessels in the chemical and petrochemical industry serviced in high temperature, which results in the reduction of roughness due to metallurgical change in some low alloy steels. Pressure vessels that are temper embrittled may be susceptible to brittle fracture under certain operating conditions which cause high stress by thermal gradients, e.g., during start-up and shutdown. 2.25Cr1-Mo steel is widely used to make hydrogenation reactor due to its superior combination of high mechanical strength, good weldability, excellent high temperature hydrogen attack (HTHA) and oxidation-resistance. However, 2.25Cr-1Mo steel is particularly susceptible to temper embrittlement. In this paper, the effect of carbide on temper embrittlement of 2.25Cr-1Mo steel was investigated. Mechanical properties and the ductile-brittle transition temperature (DBTT) of 2.25Cr-1Mo steel were measured by tensile test and impact test. The tests were performed at two positions (base metal and weld metal) and three states (original, step cooling treated and in-service for a hundred thousand hours). The content and distribution of carbides were analyzed by scanning electron microscope (SEM). The content of Cr and Mo elements in carbide was measured by energy dispersive X-ray analysis (EDS). The results showed that the embrittlement could increase the strength and reduce the plasticity. Higher carbide contents appear to be responsible for the higher DBTT. The in-service 2.25Cr-1Mo steel showed the highest DBTT and carbide content, followed by step cooling treated 2.25Cr-1Mo steel, while the as-received 2.25Cr-1Mo steel has the minimum DBTT and carbide content. At the same time, the Cr and Mo contents in carbide increased with the increasing of DBTT. It is well known that the specimen analyzed by SEM is very small in size, sampling SEM specimen is convenient and nondestructive to pressure vessel. Therefore, the relationship between DBTT and the content of carbide offers a feasible nondestructive method for quantitative measuring the temper embrittlement of 2.25Cr-1Mo steel pressure vessel.


Sign in / Sign up

Export Citation Format

Share Document