Full-scale field experimental investigation on the interfacial shear capacity of continuous slab track structure

2016 ◽  
Vol 16 (3) ◽  
pp. 485-493 ◽  
Author(s):  
Gonglian Dai ◽  
Miao Su
Author(s):  
Junjie Huang ◽  
Qian Su ◽  
Wei Wang ◽  
Pham Duc Phong ◽  
Kaiwen Liu

Passenger comfort and safety are the most important aspects in the operation of high-speed railways. Mud pumping is a typical problem that occurs in the slab track and the subgrade interface, which influences passenger comfort and safety. In this paper, various field investigations and a full-scale model of the slab track and the subgrade are presented. The external and internal characteristics of mud pumping in the slab track–subgrade interface and the influence of mud pumping on the dynamic properties of the slab track–subgrade are analyzed. The results show that mud pumping only occurs at the expansion joints in the concrete base of the slab track structure. This happens due to the infiltration of rainwater into the subgrade bed through the cracks in the expansion joints. When the upper layer of the subgrade is kept saturated in the full-scale model, mud pumping is found to occur after 3.0 × 104 loading cycles. The vibration ratio of the subgrade surface to the concrete base gradually increases with continued cyclic loading. In addition, the cumulative settlement of the subgrade increased continuously. After 2.0 × 106 loading cycles, it was found that a large volume of slurry composed of water and fine particles was squeezed out of the subgrade bed, and mud pumping occurred on the surface of the subgrade bed leading to the formation of a mud layer between the concrete base and the subgrade bed, causing a loss of contact between the subgrade bed and the concrete base. This reduces the ability of the subgrade bed to support the slab track structure.


2021 ◽  
pp. 100093
Author(s):  
Ico Broekhuizen ◽  
Santiago Sandoval ◽  
Hanxue Gao ◽  
Felipe Mendez-Rios ◽  
Günther Leonhardt ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3520
Author(s):  
Xiaopei Cai ◽  
Qian Zhang ◽  
Yanrong Zhang ◽  
Qihao Wang ◽  
Bicheng Luo ◽  
...  

In order to find out the influence of subgrade frost heave on the deformation of track structure and track irregularity of high-speed railways, a nonlinear damage finite element model for China Railway Track System III (CRTSIII) slab track subgrade was established based on the constitutive theory of concrete plastic damage. The analysis of track structure deformation under different subgrade frost heave conditions was focused on, and amplitude the limit of subgrade frost heave was put forward according to the characteristics of interlayer seams. This work is expected to provide guidance for design and construction. Subgrade frost heave was found to cause cosine-type irregularities of rails and the interlayer seams in the track structure, and the displacement in lower foundation mapping to rail surfaces increased. When frost heave occured in the middle part of the track slab, it caused the greatest amount of track irregularity, resulting in a longer and higher seam. Along with the increase in frost heave amplitude, the length of the seam increased linearly whilst its height increased nonlinearly. When the frost heave amplitude reached 35 mm, cracks appeared along the transverse direction of the upper concrete surface on the base plate due to plastic damage; consequently, the base plate started to bend, which reduced interlayer seams. Based on the critical value of track structures’ interlayer seams under different frost heave conditions, four control limits of subgrade frost heave at different levels of frost heave amplitude/wavelength were obtained.


2011 ◽  
Vol 97-98 ◽  
pp. 3-9
Author(s):  
Yang Wang ◽  
Quan Mei Gong ◽  
Mei Fang Li

The slab track is a new sort of track structure, which has been widely used in high-speed rail and special line for passenger. However, the ballastless track structure design theory is still not perfect and can not meet the requirements of current high-speed rail and passenger line ballastless track. In this paper, composite beam method is used to calculate the deflection of the track plate and in this way the vertical supporting stress distribution of the track plate can be gotten which set a basis for the follow-up study of the dynamic stress distribution in the subgrade. Slab track plate’s bearing stress under moving load is analyzed through Matlab program. By calculation and analysis, it is found that the deflection of track plate and the rail in the double-point-supported finite beam model refers to the rate of spring coefficient of the fastener and the mortar.The supporting stress of the rail plate is inversely proportional to the supporting stress of the rail. The two boundary conditions of that model ,namely, setting the end of the model in the seams of the track plate or not , have little effect on the results. We can use the supporting stress of the track plates on state 1to get the distribution of the supporting stress in the track plate when bogies pass. Also, when the dynamic load magnification factor is 1.2, the track plate supporting stress of CRST I & CRST II-plate non-ballasted structure is around 40kPa.


1980 ◽  
Vol 7 (4) ◽  
pp. 614-620
Author(s):  
J. S. Kennedy ◽  
D. J. Wilson ◽  
P. F. Adams ◽  
M. Perlynn

This paper presents the results of full-scale field tests on two steel guyed latticed towers. The towers were approximately 83 m in height, were guyed at three levels, and were of bolted angle construction. The observed results consist of the natural frequencies of the first two modes of vibration as well as the damping ratio for the first mode. The observed results are compared with analytical predictions and observations made concerning the contributions of structural and cable action to the damping ratio.


Author(s):  
Athanasios Vratsikidis ◽  
Dimitris Pitilakis ◽  
Anastasios Anastasiadis ◽  
Anastasios Kapouniaris

Sign in / Sign up

Export Citation Format

Share Document