Neural network approximation-based backstepping sliding mode control for spacecraft with input saturation and dynamics uncertainty

Author(s):  
Erjiang Liu ◽  
Ye Yan ◽  
Yueneng Yang
Author(s):  
Renqiang Wang ◽  
Qinrong Li ◽  
Shengze Miao ◽  
Keyin Miao ◽  
Hua Deng

Abstract: The purpose of this paper was to design an intelligent controller of ship motion based on sliding mode control with a Radial Basis Function (RBF) neural network optimized by the genetic algorithm and expansion observer. First, the improved genetic algorithm based on the distributed genetic algorithm with adaptive fitness and adaptive mutation was used to automatically optimize the RBF neural network. Then, with the compensation designed by the RBF neural network, anti-saturation control was realized. Additionally, the intelligent control algorithm was introduced by Sliding Mode Control (SMC) with the stability theory. A comparative study of sliding mode control integrated with the RBF neural network and proportional–integral–derivative control combined with the fuzzy optimization model showed that the stabilization time of the intelligent control system was 43.75% faster and the average overshoot was reduced by 52% compared with the previous two attempts. Background: It was known that the Proportional-Integral-Derivative (PID) control and self-adaptation control cannot really solve the problems of frequent disturbance from external wind and waves, as well as the problems with ship nonlinearity and input saturation. So, the previous ship motion controller should be transformed by advanced intelligent technology, on the basis of referring to the latest relevant patent design methods. Objective: An intelligent controller of ship motion was designed based on optimized Radial Basis Function Neural Network (RBFNN) in the presence of non-linearity, uncertainty, and limited input. Methods: The previous ship motion controller was remodeled based on Sliding Mode Control (SMC) with RBFNN optimized by improved genetic algorithm and expansion observer. The intelligent control algorithm integrated with genetic neural network solved the problem of system model uncertainty, limited control input, and external interference. Distributed genetic with adaptive fitness and adaptive mutation method guaranteed the adequacy of search and the global optimal convergence results, which enhanced the approximation ability of RBFNN. With the compensation designed by the optimized RBFNN, it was realized anti-saturation control. The chattering caused by external disturbance in SMC controller was reduced by the expansion observer. Results: A comparative study with RBFNN-SMC control and fuzzy-PID control, the stabilization time of the intelligent control system was 43.75% faster, the average overshoot was reduced by 52%, compared to the previous two attempts. Conclusion: The intelligent control algorithm succeed in dealing with the problems of nonlinearity, uncertainty, input saturation, and external interference. The intelligent control algorithm can be applied into research and development ship steering system, which would be created a new patent.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Xue Han

In order to track the desired path under unknown parameters and environmental disturbances, an adaptive backstepping sliding mode control algorithm with a neural estimator is proposed for underactuated ships considering both ship-bank interaction effect and shift angle. Using the features of radial basis function neural network, which can approximate arbitrary function, the unknown parameters of the ship model and environmental disturbances are estimated. The trajectory tracking errors include stabilizing sway and surge velocities errors. Based on the Lyapunov stability theory, the tracking error will converge to zero and the system is asymptotically stable. The controlled trajectory is contractive and asymptotically tends to the desired position and attitude. The results show that compared with the basic sliding mode control algorithm, the overshoot of the adaptive backstepping sliding mode control with neural estimator is smaller and the regulation time of the system is shorter. The ship can adjust itself and quickly reach its desired position under disturbances. This shows that the designed RBF neural network observer can track both the mild level 3 sea state and the bad level 5 sea state, although the wave disturbance has relatively fast time-varying disturbance. The algorithm has good tracking performance and can realize the accurate estimation of wave disturbance, especially in bad sea conditions.


2019 ◽  
Vol 9 (6) ◽  
pp. 1240 ◽  
Author(s):  
Bingbing Qiu ◽  
Guofeng Wang ◽  
Yunsheng Fan ◽  
Dongdong Mu ◽  
Xiaojie Sun

In the presence of modeling uncertainties and input saturation, this paper proposes a practical adaptive sliding mode control scheme for an underactuated unmanned surface vehicle (USV) using neural network, auxiliary dynamic system, sliding mode control and backstepping technique. First, the radial basis function neural network with minimum learning parameter method (MLP) is constructed to online approximate the uncertain system dynamics, which uses single parameter instead of all weights online learning, leading to a reduction in the computational burdens. Then a hyperbolic tangent function is adopted to reduce the chattering phenomenon due to the sliding mode surface. Meanwhile, the auxiliary dynamic system and the adaptive technology are employed to handle input saturation and unknown disturbances, respectively. In addition, a neural shunting model is introduced to eliminate the “explosion of complexity” problem caused by the backstepping method for virtual control derivation. The stability of the closed-loop system is guaranteed by the Lyapunov stability theory. Finally, simulations are provided to validate the effectiveness of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document