Effects of the exit convergent ratio on the propagation behavior of rotating detonations utilizing liquid kerosene

Author(s):  
Minghao Zhao ◽  
Ke Wang ◽  
Yiyuan Zhu ◽  
Zhicheng Wang ◽  
Yu Yan ◽  
...  
Keyword(s):  
Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2746
Author(s):  
Mingjin Liu ◽  
Jiaxu Luo ◽  
Jin Chen ◽  
Xueqin Gao ◽  
Qiang Fu ◽  
...  

With the development of polymer science, more attention is being paid to the longevity of polymer products. Slow crack growth (SCG), one of the most important factors that reveal the service life of the products, has been investigated widely in the past decades. Here, we manufactured an isotactic polypropylene (iPP) sample with a novel shear layer–spherulites layer alternated structure using multiflow vibration injection molding (MFVIM). However, the effect of the alternated structure on the SCG behavior has never been reported before. Surprisingly, the results showed that the resistivity of polymer to SCG can be enhanced remarkably due to the special alternated structure. Moreover, this sample shows unique slow crack propagation behavior in contrast to the sample with the same thickness of shear layer, presenting multiple microcracks in the spherulites layer, which can explain the reason of the resistivity improvement of polymer to SCG.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1047
Author(s):  
Wenxiang Jiang ◽  
Xiaoyi Ren ◽  
Jinghao Zhao ◽  
Jianli Zhou ◽  
Jinyao Ma ◽  
...  

An in situ scanning electron microscope (SEM) tensile test for Ni-based single-crystal superalloy was carried out at 1000 °C. The stress displacement was obtained, and the yield strength and tensile strength of the superalloy were 699 MPa and 826 MPa, respectively. The crack propagation process, consisting of Model I crack and crystallographic shearing crack, was determined. More interestingly, the crack propagation path and rate affected by eutectics was directly observed and counted. Results show that the coalescence of the primary crack and second microcrack at the interface of a γ/γ′ matrix and eutectics would make the crack propagation rate increase from 0.3 μm/s to 0.4 μm/s. On the other hand, crack deflection decreased the rate to 0.05 μm/s. Moreover, movement of dislocations in front of the crack was also analyzed to explain the different crack propagation behavior in the superalloy.


Sign in / Sign up

Export Citation Format

Share Document