Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content

2015 ◽  
Vol 84 ◽  
pp. 229-236 ◽  
Author(s):  
Z.H. Cai ◽  
H. Ding ◽  
R.D.K. Misra ◽  
Z.Y. Ying
2019 ◽  
Vol 42 (5) ◽  
pp. 1085-1099 ◽  
Author(s):  
Peter I. Christodoulou ◽  
Alexis T. Kermanidis ◽  
Gregory N. Haidemenopoulos ◽  
Daniel Krizan ◽  
Kyriaki Polychronopoulou

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5975
Author(s):  
Jae-Hwan Kim ◽  
Jong-Min Jung ◽  
Hyunbo Shim

The tensile properties and damping capacity of cold-rolled Fe–20Mn–12Cr–3Ni–3Si alloys were investigated. The martensitic transformation was identified, including surface relief with a specific orientation and partial intersection. Besides, as the cold rolling degree increased, the volume fraction of ε-martensite increased, whereas α’-martensite started to form at the cold rolling degree of 15% and slightly increased to 6% at the maximum cold rolling degree. This difference may be caused by high austenite stability by adding alloying elements (Mn and Ni). As the cold rolling degree increased, the tensile strength linearly increased, and the elongation decreased due to the fractional increment in the volume of martensite. However, the damping capacity increased until a 30% cold rolling degree was approached, and then decreased. The irregular tendency of the damping capacity was confirmed, depicting that it increased to a specific degree and then decreased as the tensile strength and elongation increased. Concerning the relationship between the tensile properties and the damping capacity, the damping capacity increased and culminated, and then decreased as the tensile properties and elongation increased. The damping capacity in the high-strength area tended to decrease because it is difficult to dissipate vibration energy into thermal energy in alloys with high strength. In the low-strength area, on the other hand, the damping capacity increased as the strength increased since the increased volume fraction of ε-martensite is attributed to the increase in the damping source.


2020 ◽  
Vol 176 ◽  
pp. 122-125
Author(s):  
Won Seok Choi ◽  
Hyun Seok Oh ◽  
Minjie Lai ◽  
Nataliya V. Malyar ◽  
Christoph Kirchlechner ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1432
Author(s):  
Maokun Bai ◽  
Dapeng Yang ◽  
Guodong Wang ◽  
Joohyun Ryu ◽  
Kyooyoung Lee ◽  
...  

The narrow process window during intercritical annealing and discontinuous yielding have limited the commercialization of medium Mn steels. In this study, a double-annealing process based on the commercial continuous annealing line is proposed. The cold-rolled medium Mn steels were first fully austenitized and quenched during the first annealing, followed by intercritical annealing for reverted austenite transformation. The microstructure of duplex lath-shaped austenite and ferrite is produced and steel exhibits a desirable continuous yielding during tensile deformation. Al is added into the medium Mn steel to enlarge the process window and to improve the partitioning efficiency of Mn. The produced steel is more robust with temperature fluctuation during the industrial process due to the enlarged intercritical region. Mn partitioning is more efficient owing to the elevated annealing temperature, which results in the improvement of ductility in the Al-added steel with increased austenite stability.


Sign in / Sign up

Export Citation Format

Share Document