scholarly journals Tensile Properties and Damping Capacity of Cold-Rolled Fe-20Mn-12Cr-3Ni-3Si Damping Alloy

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5975
Author(s):  
Jae-Hwan Kim ◽  
Jong-Min Jung ◽  
Hyunbo Shim

The tensile properties and damping capacity of cold-rolled Fe–20Mn–12Cr–3Ni–3Si alloys were investigated. The martensitic transformation was identified, including surface relief with a specific orientation and partial intersection. Besides, as the cold rolling degree increased, the volume fraction of ε-martensite increased, whereas α’-martensite started to form at the cold rolling degree of 15% and slightly increased to 6% at the maximum cold rolling degree. This difference may be caused by high austenite stability by adding alloying elements (Mn and Ni). As the cold rolling degree increased, the tensile strength linearly increased, and the elongation decreased due to the fractional increment in the volume of martensite. However, the damping capacity increased until a 30% cold rolling degree was approached, and then decreased. The irregular tendency of the damping capacity was confirmed, depicting that it increased to a specific degree and then decreased as the tensile strength and elongation increased. Concerning the relationship between the tensile properties and the damping capacity, the damping capacity increased and culminated, and then decreased as the tensile properties and elongation increased. The damping capacity in the high-strength area tended to decrease because it is difficult to dissipate vibration energy into thermal energy in alloys with high strength. In the low-strength area, on the other hand, the damping capacity increased as the strength increased since the increased volume fraction of ε-martensite is attributed to the increase in the damping source.

2007 ◽  
Vol 345-346 ◽  
pp. 753-756
Author(s):  
Chang Yong Kang ◽  
Don Wook Son ◽  
Jang Hyun Sung ◽  
Ki Woo Nam

The damping capacity and strength of Fe-6Al-25/34Mn alloys have been studied for the development of new materials with high strength and damping capacity. Particularly, the effect of α’(including α) and ε martensite phases, which constitute the microstructure of cold rolled Fe-Al-Mn alloys, has been investigated in terms of the strength and damping capacity of the alloys. The damping capacity rises with increasing the degree of cold rolling and reveals the maximum value at 32% reduction. The damping capacity is strongly affected by the volume fraction of ε martensite. The phases such as α’ and austenite(γ) on damping capacity. Considering that tensile strength increases and elongation decreases with increasing the volume fraction of α’-martensite, it is proved that tensile strength is mainly affected by the amount of α’martensite.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7160
Author(s):  
Jae-Hwan Kim ◽  
Myong-Soo Lee ◽  
Jong-Sig Kim

The relationship between the tensile properties and damping capacity of fatigue-damaged Fe-22%Mn-12%Cr-4%Co-3%Ni-2%Si alloy under various magnitudes of fatigue stress was investigated. Analytical results show that α′- and ε-martensite were formed due to fatigue stress. The formed α′- and ε-martensite followed a specific orientation and surface relief and intersected with each other. TEM observation and pattern analysis reveal that both α′- and ε-martensites formed on the austenite. As a result of X-ray diffraction, with an increase in fatigue stress, the volume fractions of α′- and ε-martensite were increased, and the increasing rate of the volume fraction of α′-martensite was higher than that of the ε-martensite. As the fatigue stress increased, the tensile strength and damping capacity increased, but the elongation decreased. Besides, as the strength increased and the elongation decreased, the damping capacity decreased. This result is inconsistent with the general tendency for metals but similar to that of alloys undergoing deformation-induced martensite transformation.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Alloy Digest ◽  
1964 ◽  
Vol 13 (1) ◽  

Abstract MEEHANITE-GD is a high strength iron casting having high damping capacity, self-lubricating properties, and good machinability. It combines the good properties of both cast iron and steel. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on casting, heat treating, machining, and joining. Filing Code: CI-32. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
2010 ◽  
Vol 59 (12) ◽  

Abstract Dogal 600 and 800 DP are high-strength steels with a microstructure that contains ferrite, which is soft and formable, and martensite, which is hard and contributes to the strength of the steel. The designation relates to the lowest tensile strength. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, joining, and surface treatment. Filing Code: CS-160. Producer or source: SSAB Swedish Steel Inc. and SSAB Swedish Steel.


Alloy Digest ◽  
1998 ◽  
Vol 47 (5) ◽  

Abstract Inland DuraSpring is a high-strength microalloyed spring steel for use in high stress coil springs for automobile and light truck suspension systems. This bar product offers significant improvements in tensile strength, fatigue properties, and fracture toughness compared to conventional spring steels. This datasheet provides information on composition, hardness, and tensile properties as well asfracture toughness and fatigue. Filing Code: SA-496. Producer or source: Ispat Inland Inc.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 906
Author(s):  
Dong Han ◽  
Yongqing Zhao ◽  
Weidong Zeng

The present study focuses on the effect of 1% Zr addition on the microstructure, tensile properties and superplasticity of a forged SP700 alloy. The results demonstrated that Zr has a significant effect on inhibiting the microstructural segregation and increasing the volume fraction of β-phase in the forged SP700 alloy. After annealing at 820 °C for 1 h and aging at 500 °C for 6 h, the SP700 alloy with 1% Zr showed a completely globular and fine microstructure. The yield strength, ultimate tensile strength and tensile elongation of the alloy with optimized microstructure were 1185 MPa, 1296 MPa and 10%, respectively. The superplastic deformation was performed at 750 °C with an elongation of 1248%. The improvement of tensile properties and superplasticity of the forged SP700 alloy by Zr addition was mainly attributed to the uniform and fine globular microstructures.


2010 ◽  
Vol 97-101 ◽  
pp. 153-157
Author(s):  
Tao Wang ◽  
Hong Zhen Guo ◽  
Jian Hua Zhang ◽  
Ze Kun Yao

The microstructures and room temperature and 600°C tensile properties of Ti-5.8Al-4.0Sn-4.0Zr-0.7Nb -0.4Si-1.5Ta alloy after isothermal forging have been studied. The forging temperature range was from 850°C to 1075°C, and the constant strain rate of 8×10-3/S-1 was adopted. With the increase of forging temperature, the volume fraction of primary α phase decreased and the lamellar α phase became thicker when the temperatures were in range of 850°C -1040°C; The grain size became uneven and the α phase had different forms when the forging temperature was 1040°C and 1075°C respectively; The tensile strength was not sensitive to the temperature and the most difference was within 20MPa. Tensile strength and yield strength attained to the maximum when temperature was 1020°C; the ductility decreased with the increase of forging temperature, and this trend became more obvious if forging temperature was above the β-transus temperature.


2012 ◽  
Vol 706-709 ◽  
pp. 2181-2186 ◽  
Author(s):  
Tulio M.F. Melo ◽  
Érica Ribeiro ◽  
Lorena Dutra ◽  
Dagoberto Brandão Santos

The increasing demand, mainly from the automobile industry, for materials which combine high strength, high ductility and low specific weight makes steels with the TWIP (TWinning Induced Plasticity) effect a promising material to meet these requirements. This work aimed to study the kinetics of isothermal recrystallization of a TWIP steel (C-0.06%, Mn-25%, Al-3%, Si-2%, and Ni-1%) after cold rolling. The steel was hot and cold-rolled and then annealed at 700°C with soaking times ranging from 10 to 7200 s. Microstructural analysis was performed using light (LM) and scanning electron microscopy (SEM). Furthermore, quantitative metallography was performed in order to evaluate the recrystallized volume fraction and grain size. A JMAK based model was applied to describe the nucleation grain growth process. The restoration of the steel was also evaluated by microhardness tests. A complete recrystallization after 7200 s at 700°C was observed. It was found that with increasing annealing times, the recrystallized volume fraction also increases, while the nucleation and growth rates decrease, in agreement with the results for plain carbon steels.


2010 ◽  
Vol 34-35 ◽  
pp. 1441-1444 ◽  
Author(s):  
Ju Zhang ◽  
Chang Wang Yan ◽  
Jin Qing Jia

This paper investigates the compressive strength and splitting tensile strength of ultra high strength concrete containing steel fiber. The steel fibers were added at the volume fractions of 0%, 0.5%, 0.75%, 1.0% and 1.5%. The compressive strength of the steel fiber reinforced ultra high strength concrete (SFRC) reached a maximum at 0.75% volume fraction, being a 15.5% improvement over the UHSC. The splitting tensile strength of the SFRC improved with increasing the volume fraction, achieving 91.9% improvements at 1.5% volume fraction. Strength models were established to predict the compressive and splitting tensile strengths of the SFRC. The models give predictions matching the measurements. Conclusions can be drawn that the marked brittleness with low tensile strength and strain capacities of ultra high strength concrete (UHSC) can be overcome by the addition of steel fibers.


Sign in / Sign up

Export Citation Format

Share Document