Bulk nanocrystalline high-strength magnesium alloys prepared via rotary swaging

2020 ◽  
Vol 200 ◽  
pp. 274-286 ◽  
Author(s):  
Yingchun Wan ◽  
Bei Tang ◽  
Yonghao Gao ◽  
Lingling Tang ◽  
Gang Sha ◽  
...  
Author(s):  
Yanwei Liu ◽  
Leyun Wang ◽  
Huan Zhang ◽  
Gaoming Zhu ◽  
Jie Wang ◽  
...  

2002 ◽  
Vol 17 (5) ◽  
pp. 991-1001 ◽  
Author(s):  
X. Y. Qin ◽  
J. S. Lee ◽  
C. S. Lee

The microstructures and mechanical behavior of bulk nanocrystalline γ–Ni–xFe (n-Ni–Fe) with x = ∼19–21 wt%, synthesized by a mechanochemical method plus hot-isostatic pressing, were investigated using microstructural analysis [x-ray diffraction, energy-dispersive spectroscopy, light emission spectrum, atomic force microscopy (AFM), and optical microscopy (OM)], and mechanical (indentation and compression) tests, respectively. The results indicated that the yield strength (σ0.2) of n-Ni–Fe (d ∼ 33 nm) is about 13 times greater than that of conventional counterpart. The change of yield strength with grain size was basically in agreement with Hall–Petch relation in the size range (33–100 nm) investigated. OM observations demonstrated the existence of two sets of macroscopic bandlike deformation traces mostly orienting at 45–55° to the compression axis, while AFM observations revealed that these bandlike traces consist of ultrafine lines. The cause for high strength and the possible deformation mechanisms were discussed based on the characteristics of microstructures and deformation morphology of n-Ni–Fe.


2008 ◽  
Vol 579 ◽  
pp. 15-28 ◽  
Author(s):  
Carl C. Koch ◽  
Khaled M. Youssef ◽  
Ron O. Scattergood

This paper reviews a method, “in situ consolidation ball milling” that provides artifactfree bulk nanocrystalline samples for several ductile metals such as Zn, Al and Al alloys, and Cu and Cu alloys. The preparation method is described in this paper and examples of the mechanical behavior of nanocrystalline materials made by this technique are given. It is found that in such artifact-free metals, combinations of both high strength and good ductility are possible.


2016 ◽  
Vol 663 ◽  
pp. 321-331 ◽  
Author(s):  
Hucheng Pan ◽  
Yuping Ren ◽  
He Fu ◽  
Hong Zhao ◽  
Liqing Wang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 497 ◽  
Author(s):  
Mirko Teschke ◽  
Alexander Koch ◽  
Frank Walther

Due to their high strength-to-weight-ratio, magnesium alloys are very attractive for use in automotive engineering. For application at elevated temperatures, the alloys must be creep-resistant. Therefore, the influence of the operating temperature on the material properties under quasistatic and cyclic load has to be understood. A previous study investigated tensile-tensile fatigue behavior of the magnesium alloys DieMag422 and AE42 at room temperature (RT). The aim of this study was the comparison of both alloys regarding compression, tensile, and compression-compression fatigue behavior. The quasistatic behavior was determined by means of tensile and compression tests, and the tensile-compression asymmetry was analyzed. In temperature increase fatigue tests (TIFT) and constant amplitude tests (CAT), the temperature influence on the cyclic creeping (ratcheting) behavior was investigated, and mechanisms-relevant test temperatures were determined. Furthermore, characteristic fracture mechanisms were evaluated with investigations of the microstructure and the fracture surfaces. The initial material was analyzed in computed tomographic scans and energy dispersive X-ray (EDX) analyses.


2020 ◽  
Vol 1000 ◽  
pp. 115-122
Author(s):  
Nono Darsono ◽  
Murni Handayani ◽  
Franciska Pramuji Lestari ◽  
Aprilia Erryani ◽  
I Nyoman Gede Putrayasa ◽  
...  

Magnesium Alloys have the potential to be applied in the various fields of applications including biomaterials. Magnesium Alloys are an interesting alloy due to its high strength to density ratio. They have been proposed as a biodegradable implant material due to its friendly effect to human body compared to another alloy. Besides its good biodegradable properties, it has a disadvantage of low hardness and corrosion properties. In order to overcome this, it has been combined with other metals such as Zinc (Zn) or Copper (Cu). To increase mechanical properties, we used Carbon Nanotubes (CNT) as reinforcement. Magnesium-Zinc (Mg-xZn) CNTs composites with several compositions was prepared by using powder metallurgy and sintered in the presence of flowing Argon (Ar) gas in tube furnace. Mg-Zn Alloy with the composition of 4% and 6% of Zn and the variation of CNTs at 0.1%, 0.3 %, and 0.5% was also prepared. Hardness testing by using microvickers showed that CNTs can increase the alloy hardness which the maximum hardness is 53.6 HV. The corrosion rates as low as 175.5 mpy exhibited for the Mg-Alloy with the composition of Mg-4-Zn with 0.1 wt.% of CNTs


2011 ◽  
Vol 64 (10) ◽  
pp. 950-953 ◽  
Author(s):  
R.G. Li ◽  
J.F. Nie ◽  
G.J. Huang ◽  
Y.C. Xin ◽  
Q. Liu

Sign in / Sign up

Export Citation Format

Share Document