Hydraulic permeability of multilayered collagen gel scaffolds under plastic compression-induced unidirectional fluid flow

2013 ◽  
Vol 9 (1) ◽  
pp. 4673-4680 ◽  
Author(s):  
Vahid Serpooshan ◽  
Thomas M. Quinn ◽  
Naser Muja ◽  
Showan N. Nazhat
Author(s):  
Zhu Fanglong ◽  
Feng Qianqian ◽  
Liu Rangtong ◽  
Li Kejing ◽  
Zhou Yu

Purpose – The purpose of this paper is to employ a fractional approach to predict the permeability of nonwoven fabrics by simulating diffusion process. Design/methodology/approach – The method described here follows a similar approach to anomalous diffusion process. The relationship between viscous hydraulic permeability and electrical conductivity of porous material is applied in the derivation of fractional power law of permeability. Findings – The presented power law predicted by fractional method is validated by the results obtained from simulation of fluid flow around a 3D nonwoven porous material by using the lattice-Boltzmann approach. A relation between the fluid permeability and the fluid content (filling fraction), namely, following the power law of the form, was derived via a scaling argument. The exponent n is predominantly a function of pore-size distribution dimension and random walk dimension of the fluid. Originality/value – The fractional scheme by simulating diffusion process presented in this paper is a new method to predict wicking fluid flow through nonwoven fabrics. The forecast approach can be applied to the prediction of the permeability of other porous materials.


1999 ◽  
Author(s):  
Michael A. Soltz ◽  
Anna Stankiewicz ◽  
Gerard Ateshian ◽  
Robert L. Mauck ◽  
Clark T. Hung

Abstract The objective of this study was to determine the intrinsic hydraulic permeability of 2% agarose hydrogels. Two-percent agarose was chosen because it is a concentration typically used for encapsulation of chondrocytes in suspension cultures [3–5], Hydraulic permeability is a measure of the relative ease by which fluid can pass through a material. Importantly, it governs the level of interstitial fluid flow as well as the interstitial fluid pressurization that is generated in a material during loading. Fluid pressurization is the source of the unique load-bearing and lubrication properties of articular cartilage [1,17] and represents a major component of the in vivo chondrocyte environment. We have previously reported that 2% agarose hydrogels can support fluid pressurization, albeit to a significantly lesser degree than articular cartilage [18]. Interstitial fluid flow gives rise to convective transport of nutrients and ions [6,7] and matrix compaction [9] which may serve as important stimuli to chondrocytes. We report for the first time the strain-dependent hydraulic permeability of 2% agarose hydrogels.


2010 ◽  
Vol 297-301 ◽  
pp. 408-412 ◽  
Author(s):  
Antonio F. Miguel

This paper aims to contribute to the ongoing research on tree-shaped flow structures. First, it briefly traces the progress made on constructal tree-shaped flow networks. Then, the paper focuses on tree pattern of tubes connecting the centre and the rim of a circular area. It shows that the physical description underlying the classical Darcy-Forchheimer-Ergun equation may provide a legitimate correlation for this kind of flow structure. The porosity, hydraulic permeability and the inertial factor of the flow structure are also presented.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Bastian Schaefer ◽  
Hermann Nirschl

Fluid flow and charge transport in fine structures can be driven both by pressure gradients and by electric fields if electrochemical double layers are present on the surfaces. The interrelated electrohydrodynamic effects may be used to drive liquids without moving parts, for example, in dewatering or in electroosmotic chromatography, or to generate small electric currents. While the electrohydrodynamic transport is well understood for simple geometries, models for porous structures are complex. Furthermore, the interconnected porous structure of a packed bed itself strongly depends on the electrochemical double layers. In this study, the electrohydrodynamic transport in packed beds consisting of boehmite particles with an average diameter of 38 nm is investigated. We describe a new approach to the electrokinetic effects by treating the packed beds as theoretical sets of cylindrical capillaries. The charge transport and the electrically driven fluid flow predicted with this model agree well with experimental results. Furthermore, the hydraulic permeability was found to be a nonlinear function of the porosity, independent of whether the porosity change is caused by changing the compression or the electrochemical double layer.


Sign in / Sign up

Export Citation Format

Share Document