system cell
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 31)

H-INDEX

31
(FIVE YEARS 2)

Author(s):  
Mengyu Guo ◽  
Chenjie Xia ◽  
Yu Wu ◽  
Nong Zhou ◽  
Zhipeng Chen ◽  
...  

Cell membrane-coated biomimetic nanoplatforms have many inherent properties, such as bio-interfacing abilities, self-identification, and signal transduction, which enable the biomimetic delivery system to escape immune clearance and opsonization. This can also maximize the drug delivery efficiency of synthetic nanoparticles (NPs) and functional cell membranes. As a new type of delivery system, cell membrane-coated biomimetic delivery systems have broadened the prospects for biomedical applications. In this review, we summarize research progress on cell membrane biomimetic technology from three aspects, including sources of membrane, modifications, and applications, then analyze their limitations and propose future research directions.


Author(s):  
Xin-yue Fan ◽  
Zhuo-fen Deng ◽  
Yan-yan Yan ◽  
Valerii E. Orel ◽  
Andrii Shypko ◽  
...  

With the continuous development of drug screening technology, new screening methodologies and technologies are constantly emerging, driving drug screening into rapid, efficient and high-throughput development. Microfluidics is a rising star in the development of innovative approaches in drug discovery. In this article, we summarize the recent years' progress of microfluidic chip technology in drug screening, including the developmental history, structural design, and applications in different aspects of microfluidic chips on drug screening. Herein, the existing microfluidic chip screening platforms are summarized from four aspects: chip structure design, sample injection and drive system, cell culture technology on a chip, and efficient remote detection technology. Furthermore, this review discusses the application and developmental prospects of using microfluidic chips in drug screening, particularly in screening natural product anticancer drugs based on chemical properties, pharmacological effects,  and drug cytotoxicity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Chih Hung Lo ◽  
Mario Skarica ◽  
Mohammad Mansoor ◽  
Shaan Bhandarkar ◽  
Steven Toro ◽  
...  

The emergence of single cell technologies provides the opportunity to characterize complex immune/central nervous system cell assemblies in multiple sclerosis (MS) and to study their cell population structures, network activation and dynamics at unprecedented depths. In this review, we summarize the current knowledge of astrocyte subpopulations in MS tissue and discuss the challenges associated with resolving astrocyte heterogeneity with single-nucleus RNA-sequencing (snRNA-seq). We further discuss multiplexed imaging techniques as tools for defining population clusters within a spatial context. Finally, we will provide an outlook on how these technologies may aid in answering unresolved questions in MS, such as the glial phenotypes that drive MS progression and/or neuropathological differences between different clinical MS subtypes.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yang Tian ◽  
Chen Fu ◽  
Yifan Wu ◽  
Yao Lu ◽  
Xuemei Liu ◽  
...  

Exosomes are a type of extracellular vesicles secreted by almost all kinds of mammalian cells that shuttle “cargo” from one cell to another, indicative of its role in cell-to-cell transportation. Interestingly, exosomes are known to undergo alterations or serve as a pathway in multiple diseases, including neurodegenerative diseases. In the central nervous system (CNS), exosomes originating from neurons or glia cells contribute to or inhibit the progression of CNS-related diseases in special ways. In lieu of this, the current study investigated the effect of CNS cell-derived exosomes on different neurodegenerative diseases.


Author(s):  
Simone L. Schonkeren ◽  
Tara T. Küthe ◽  
Musa Idris ◽  
Ana C. Bon‐Frauches ◽  
Werend Boesmans ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Anna Kowalska-Kępczyńska ◽  
Mateusz Mleczko ◽  
Weronika Domerecka ◽  
Marcin Mazurek ◽  
Dorota Krasowska ◽  
...  

Psoriasis is an inflammatory, autoimmune disease that affects approximately 2% of the population. The inflammation in psoriasis can be systemic, so despite a predominantly cutaneous manifestation, it also affects the internal organs. The diagnosis and monitoring of the disease are based on the clinical picture. To assess the disorders of other organs, additional tests need to be performed. Recently, the examination of blood morphology has been enriched with modern haematological parameters, i.e., Extended Inflammation Parameters (EIP), which include RE-LYMPH (activated lymphocytes), AS-LYMPH (antibody-producing B lymphocytes), and NEUT-RI and NEUT-GI (activated neutrophils). In the study, higher values of new haematological parameters were observed in individuals with psoriasis than in healthy controls. A higher EIP value was noted in the group of individuals with plaque psoriasis than in the group of individuals with psoriatic arthritis. Implementation of these parameters into routine laboratory analysis will likely make it possible to estimate the severity of the inflammation and improve its assessment.


Author(s):  
Margarita Jimenez-Palomares ◽  
Alba Cristobal ◽  
Mª Carmen Duran Ruiz

Organoids have arisen as promising model systems in biomedical research and regenerative medicine due to their potential to reproduce the original tissue architecture and function. In the research field of cell–cell interactions, organoids mimic interactions taking place during organogenesis, including the processes that conduct to multi-lineage differentiation and morphogenetic processes, during immunology response and disease development and expansion. This chapter will address the basis of organoids origin, their importance on immune system cell–cell interactions and the benefits of using them in biomedicine, specifically their potential applications in regenerative medicine and personalized therapy. Organoids might represent a personalized tool for patients to receive earlier diagnoses, risk assessments, and more efficient treatments.


2021 ◽  
Author(s):  
Judy R Sayers ◽  
Paul R Riley

Abstract The most striking consequence of a heart attack is the loss of billions of heart muscle cells, alongside damage to the associated vasculature. The lost cardiovascular tissue is replaced by scar formation, which is non-functional and results in pathological remodelling of the heart and ultimately heart failure. It is, therefore, unsurprising that the heart regeneration field has centred efforts to generate new muscle and blood vessels through targeting cardiomyocyte proliferation and angiogenesis following injury. However, combined insights from embryological studies and regenerative models, alongside the adoption of -omics technology, highlight the extensive heterogeneity of cell types within the forming or re-forming heart and the significant crosstalk arising from non-muscle and non-vessel cells. In this review, we focus on the roles of fibroblasts, immune, conduction system, and nervous system cell populations during heart development and we consider the latest evidence supporting a function for these diverse lineages in contributing to regeneration following heart injury. We suggest that the emerging picture of neurologically, immunologically, and electrically coupled cell function calls for a wider-ranging combinatorial approach to heart regeneration.


Open Biology ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 200330
Author(s):  
Guillaume Poncelet ◽  
Sebastian M. Shimeld

Vertebrates develop an olfactory system that detects odorants and pheromones through their interaction with specialized cell surface receptors on olfactory sensory neurons. During development, the olfactory system forms from the olfactory placodes, specialized areas of the anterior ectoderm that share cellular and molecular properties with placodes involved in the development of other cranial senses. The early-diverging chordate lineages amphioxus, tunicates, lampreys and hagfishes give insight into how this system evolved. Here, we review olfactory system development and cell types in these lineages alongside chemosensory receptor gene evolution, integrating these data into a description of how the vertebrate olfactory system evolved. Some olfactory system cell types predate the vertebrates, as do some of the mechanisms specifying placodes, and it is likely these two were already connected in the common ancestor of vertebrates and tunicates. In stem vertebrates, this evolved into an organ system integrating additional tissues and morphogenetic processes defining distinct olfactory and adenohypophyseal components, followed by splitting of the ancestral placode to produce the characteristic paired olfactory organs of most modern vertebrates.


Sign in / Sign up

Export Citation Format

Share Document