scholarly journals Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation

2020 ◽  
Vol 101 ◽  
pp. 565-574 ◽  
Author(s):  
Rahul Atmaramani ◽  
Bitan Chakraborty ◽  
Rashed T. Rihani ◽  
Joshua Usoro ◽  
Audrey Hammack ◽  
...  
2008 ◽  
Vol 13 (4) ◽  
pp. 044038 ◽  
Author(s):  
Amanda J. Foust ◽  
Jennifer L. Schei ◽  
Manuel J. Rojas ◽  
David M. Rector

Author(s):  
Nicolette Driscoll ◽  
Kathleen Maleski ◽  
Andrew G. Richardson ◽  
Brendan Murphy ◽  
Babak Anasori ◽  
...  

Author(s):  
Matthew McDonald ◽  
David Sebinger ◽  
Lisa Brauns ◽  
Laura Gonzalez-Cano ◽  
Yotam Menuchin-Lasowski ◽  
...  

AbstractOrganoids are emerging in vitro models of human physiology. Neural models require the evaluation of functional activity of single cells and networks, which is best measured by microelectrode arrays. The characteristics of organoids clash with existing in vitro or in vivo microelectrode arrays. With inspiration from implantable mesh electronics and growth of organoids on polymer scaffolds, we fabricated suspended hammock-like mesh microelectrode arrays for neural organoids. We have demonstrated the growth of organoids enveloping these meshes, their cultivation for at least nine months, and could measure spontaneous electrical activity within organoids. Our concept should enable a new class of microelectrode arrays for in vitro models of three-dimensional electrically active tissue.


MRS Advances ◽  
2018 ◽  
Vol 3 (29) ◽  
pp. 1629-1634 ◽  
Author(s):  
Elisa Castagnola ◽  
Nasim Winchester Vahidi ◽  
Surabhi Nimbalkar ◽  
Srihita Rudraraju ◽  
Marvin Thielk ◽  
...  

ABSTRACTIn this study, we present a 4-channel intracortical glassy carbon (GC) microelectrode array on a flexible substrate for the simultaneous in vivo neural activity recording and dopamine (DA) concentration measurement at four different brain locations (220µm vertical spacing). The ability of GC microelectrodes to detect DA was firstly assessed in vitro in phosphate-buffered saline solution and then validated in vivo measuring spontaneous DA concentration in the Striatum of European Starling songbird through fast scan cyclic voltammetry(FSCV). The capability of GC microelectrode arrays and commercial penetrating metal microelectrode arrays to record neural activity from the Caudomedial Neostriatum of European starling songbird was compared. Preliminary results demonstrated the ability of GC microelectrodes in detecting neurotransmitters release and recording neural activity in vivo. GC microelectrodes array may, therefore, offer a new opportunity to understand the intimate relations linking electrophysiological parameters with neurotransmitters release.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Sign in / Sign up

Export Citation Format

Share Document