A mesh microelectrode array for non-invasive electrophysiology within neural organoids
AbstractOrganoids are emerging in vitro models of human physiology. Neural models require the evaluation of functional activity of single cells and networks, which is best measured by microelectrode arrays. The characteristics of organoids clash with existing in vitro or in vivo microelectrode arrays. With inspiration from implantable mesh electronics and growth of organoids on polymer scaffolds, we fabricated suspended hammock-like mesh microelectrode arrays for neural organoids. We have demonstrated the growth of organoids enveloping these meshes, their cultivation for at least nine months, and could measure spontaneous electrical activity within organoids. Our concept should enable a new class of microelectrode arrays for in vitro models of three-dimensional electrically active tissue.