High-temperature mechanical properties of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM)

2018 ◽  
Vol 24 ◽  
pp. 257-263 ◽  
Author(s):  
Naor Elad Uzan ◽  
Roni Shneck ◽  
Ori Yeheskel ◽  
Nachum Frage
2020 ◽  
pp. 53-70
Author(s):  
Kun Tan ◽  
Sergii Markovych ◽  
Wenjie Hu ◽  
Oleksandr Shorinov ◽  
Yurong Wang

Cold spray technology is a method of deposited metal coatings by high-speed particle impact, especially in the preparation of metal alloy materials (Cu alloys, Ti alloys, Al alloys, Ni-based alloys, Mg alloys, stainless steels, and high-temperature alloys, etc.) The performance is particularly outstanding. The sprayed materials have better mechanical properties, mechanical properties, and service life, such as tensile strength, fatigue strength, and corrosion resistance. Cold spray technology can prepare corrosion-resistant coatings and high-temperature coatings, Wear-resistant coatings, conductive coatings, and anti-oxidation coatings and other functional coatings. From the perspective of process technology and equipment design, cold spray technology can be applied to the field of additive manufacturing technology, which not only reflects the repair function but also the manufacturing function, and applies cold spray technology and repairs the parts produced by additive manufacturing – Selective Laser Melting technology. The defects and problems are of great significance. This article summarizes the repair process and technical characteristics of cold spray technology, and repairs and protects the Cu, Ti, Al, Ni, Mg, and stainless steel and other metals and their alloys from corrosion, fatigue, and wear. The maintenance is reviewed, and the application of combining cold spray technology with additive manufacturing – Selective Laser Melting technology is proposed. Many materials can be used in the field of cold spray technology and Additive Manufacturing – Selective Laser Melting technology. In the communication between the two, the combination of technology and method is of great significance; the influence of spraying parameters of cold spraying technology (such as powder particle shape, spraying angle, spraying distance, critical speed and temperature of particles and substrate, etc.) on spraying effect and efficiency are proposed. Finally, the development of cold spray technology: post-processing of parts, critical speed and numerical simulation are possible.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


Author(s):  
Xiaoqing Wang ◽  
Xibing Gong ◽  
Kevin Chou

This study presents a thorough literature review on the powder-bed laser additive manufacturing processes such as selective laser melting (SLM) of Inconel 718 parts. The paper first introduces the general aspects of powder-bed laser additive manufacturing and then discusses the unique characteristics and advantages of SLM. Moreover, the bulk of this study includes extensive discussions of microstructures and mechanical properties, together with the application ranges, of Inconel 718 parts fabricated by SLM.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 729 ◽  
Author(s):  
Wei Chen ◽  
Guangfu Yin ◽  
Zai Feng ◽  
Xiaoming Liao

Additive manufacturing by selective laser melting (SLM) was used to investigate the effect of powder feedstock on 316L stainless steel properties include microstructure, relative density, microhardness and mechanical properties. Gas atomized SS316L powders of three different particle size distribution were used in this study. Microstructural investigations were done by scanning electron microscopy (SEM). Tensile tests were performed at room temperatures. Microstructure characterization revealed the presence of hierarchical structures consisting of solidified melt pools, columnar grains and multiform shaped sub-grains. The results showed that the SLM sample from the fine powder obtained the highest mechanical properties with ultimate tensile strength (UTS) of 611.9 ± 9.4 MPa and yield strength (YS) of 519.1 ± 5.9 MPa, and an attendant elongation (EL) of 14.6 ± 1.9%, and a maximum of 97.92 ± 0.13% and a high microhardness 291 ± 6 HV0.1. It has been verified that the fine powder (~16 μm) could be used in additive manufacturing with proper printing parameters.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 629
Author(s):  
Anagh Deshpande ◽  
Subrata Deb Nath ◽  
Sundar Atre ◽  
Keng Hsu

Selective laser melting (SLM) is one of the most widely used additive manufacturing technologies. Fabricating nickel-based superalloys with SLM has garnered significant interest from the industry and the research community alike due to the excellent high temperature properties and thermal stability exhibited by the alloys. Haynes-282 alloy, a γ′-phase strengthened Ni-based superalloy, has shown good high temperature mechanical properties comparable to alloys like R-41, Waspaloy, and 263 alloy but with better fabricability. A study and comparison of the effect of different heat-treatment routes on microstructure and mechanical property evolution of Haynes-282 fabricated with SLM is lacking in the literature. Hence, in this manuscript, a thorough investigation of microstructure and mechanical properties after a three-step heat treatment and hot isostatic pressing (HIP) has been conducted. In-situ heat-treatment experiments were conducted in a transmission electron microscopy (TEM) to study γ′ precipitate evolution. γ′ precipitation was found to start at 950 °C during in-situ heat-treatment. Insights from the in-situ heat-treatment were used to decide the aging heat-treatment for the alloy. The three-step heat-treatment was found to increase yield strength (YS) and ultimate tensile strength (UTS). HIP process enabled γ′ precipitation and recrystallization of grains of the as-printed samples in one single step.


2016 ◽  
Vol 710 ◽  
pp. 83-88 ◽  
Author(s):  
Paola Bassani ◽  
Carlo Alberto Biffi ◽  
Riccardo Casati ◽  
Adrianni Zanatta Alarcon ◽  
Ausonio Tuissi ◽  
...  

Analysis of peculiar properties offered by Al alloys produced according to additive manufacturing techniques, specifically by Selective Laser Melting (SLM), is carried out. Two alloys are considered, derived by casting (AlSi10Mg) and by wrought (ENAW 2618) applications. The SLM processed samples are investigated considering their microstructural and mechanical properties after SLM and compared to cast and wrought counterparts. A strong microstructural refinement induced by SLM processing is observed for both alloys, resulting in excellent hardness properties. Investigation on integrity of samples revealed that small-size microvoids and unmelted regions could be present in SLM parts.


Sign in / Sign up

Export Citation Format

Share Document