Effect of Solution Treatment on High-Temperature Mechanical Properties of IN718 Manufactured by Selective Laser Melting

Author(s):  
Rui Sun ◽  
Wei Li ◽  
Yucheng Zhang ◽  
Tianyi Hu ◽  
Ping Wang
Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 629
Author(s):  
Anagh Deshpande ◽  
Subrata Deb Nath ◽  
Sundar Atre ◽  
Keng Hsu

Selective laser melting (SLM) is one of the most widely used additive manufacturing technologies. Fabricating nickel-based superalloys with SLM has garnered significant interest from the industry and the research community alike due to the excellent high temperature properties and thermal stability exhibited by the alloys. Haynes-282 alloy, a γ′-phase strengthened Ni-based superalloy, has shown good high temperature mechanical properties comparable to alloys like R-41, Waspaloy, and 263 alloy but with better fabricability. A study and comparison of the effect of different heat-treatment routes on microstructure and mechanical property evolution of Haynes-282 fabricated with SLM is lacking in the literature. Hence, in this manuscript, a thorough investigation of microstructure and mechanical properties after a three-step heat treatment and hot isostatic pressing (HIP) has been conducted. In-situ heat-treatment experiments were conducted in a transmission electron microscopy (TEM) to study γ′ precipitate evolution. γ′ precipitation was found to start at 950 °C during in-situ heat-treatment. Insights from the in-situ heat-treatment were used to decide the aging heat-treatment for the alloy. The three-step heat-treatment was found to increase yield strength (YS) and ultimate tensile strength (UTS). HIP process enabled γ′ precipitation and recrystallization of grains of the as-printed samples in one single step.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4256
Author(s):  
Xiao-Yan Wang ◽  
Meng Li ◽  
Zhi-Xun Wen

The as-cast alloy of nickel-based single-crystal superalloy was used as the research object. After four hours of solution treatment at 1315 °C, four cooling rates (water cooling (WC), air cooling (AC) and furnace cooling (FC1/FC2)) were used to reduce the alloy to room temperature. Four different microstructures of nickel-based superalloy material were prepared. A high-temperature tensile test at 980 °C was carried out to study the influence of various rates on the formation of the material’s microstructure and to further obtain the influence of different microstructures on the high-temperature mechanical properties of the materials. The results show that an increase of cooling rate resulted in a larger γ′ phase nucleation rate, formation of a smaller γ′ phase and a greater number. When air cooling was used, the uniformity of the γ′ phase and the coherence relationship between the γ′ phase and the γ phase were the best. At the same time, the test alloy had the best high-temperature tensile properties, and the material showed a certain degree of plasticity. TEM test results showed that the test alloy mainly blocked dislocations from traveling in the material through the strengthening effect of γ′, and that AC had the strongest hindering effect on γ′ dislocation movement.


Author(s):  
Yachao Wang ◽  
Jing Shi ◽  
Xiaoyang Deng ◽  
Shiqiang Lu

Graphene nanoplatelets (GNPs) have many outstanding properties, such as high mechanical strengths, light weight, and high electric conductivity. These unique properties make it an ideal filler material for various composites. On the other hand, the development MMNCs (metal matrix nanocomposites) through additive manufacturing (AM) processes has become a major innovation in the field of advanced structural materials, owing to shorter production lead time, less material waste, high production flexibility. It is of great innovativeness to have the attractive features combined to produce GNPs reinforced MMNCs using AM techniques. In addition, metal components produced by laser assisted additive manufacturing (LAAM) methods usually have inferior mechanical properties, as compared to the counterparts by the traditional metal forming processes. To achieve optimized mechanical properties, the obtained MMNCs are subjected to various post treatment routines and the effect of post heat treatment on material properties is investigated. In this study, pure Inconel 718 and GNPs reinforced IN718 with 1.1 vol.% and 4.4 vol.% filler material are fabricated by selective laser melting (SLM). Room temperature tensile tests are conducted to evaluate the tensile properties. Scanning electron microscopy (SEM) observations are conducted to analyze the microstructure of materials and to understand the reinforcing mechanism. It is found that fabrication of GNPs reinforced MMC using SLM is a viable approach. The obtained composites possess dense microstructure and enhanced tensile strength. The strengthening effect and mechanisms involved in the composites are discussed. Solution treatments at three levels of temperature (940, 980, and 1020°C) for 1 hour period are carried out to evaluate the effect of the heat treatment on the material microstructure and therefore the resulted mechanical properties of the composite material. The results of samples with and without heat treatment are also compared. The experiments results indicate that that addition of GNPs into Inconel 718 results in significant strength improvement. Moreover, at any volume content of reinforcement, higher solution treatment leads to lower strength, mainly due to coarsened microstructure. The addition of GNPs effectively inhibits the grain growth during the post heat process and the average grain size is significantly refined compared to unreinforced samples. Moreover, through the investigation of various strengthening mechanisms, it is found that Orowan strengthening effect is small and can be neglected for both as-built and heat treated conditions. Load transfer effect is the dominating strengthening effect among all contributors and solution treatment significantly reduces thermal mismatch strengthening.


2016 ◽  
Vol 849 ◽  
pp. 542-548
Author(s):  
Yan Zhang ◽  
Yu Fei Mei ◽  
Ning Zhou ◽  
Zheng Qin Liu ◽  
Yu Fu Sun

The high-temperature mechanical properties and microstructure of HK40 heat-resistant steel with different content of Al were investigated. The results from scanning electron microscope and transmission electron microscope showed that a large amount of spheroidal and dispersed γ′ phase were observed HK40 steel with 4.72wt.% and 7.10wt.% Al. The diameter of γ′ phase decreases from about 1.5μm to 50nm after solution treatment of 1200°C for 5h. The results of short term tensile test showed that tensile strength at 900°C decreased and the elongation was improved with increasing Al content. The oxides in the alloy with 4.72wt.% and 7.10wt.% Al were more uniform and finer than that in the alloy with and without 1.68wt.% Al.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 468 ◽  
Author(s):  
Shigeto Yamasaki ◽  
Tomo Okuhira ◽  
Masatoshi Mitsuhara ◽  
Hideharu Nakashima ◽  
Jun Kusui ◽  
...  

The effect of Fe addition on the high-temperature mechanical properties of heat-resistant aluminum alloys produced by selective laser melting (SLM) was investigated in relation to the alloy microstructures. Fe is generally detrimental to the properties of cast aluminum alloys; however, we found that Fe-containing alloys produced by SLM had improved high-temperature strength and good ductility. Microstructural observations revealed that the increase in the high-temperature strength of the alloys was due to the dispersion of fine rod-shaped Fe-Si-Ni particles unique to the SLM material instead of the cell-like structure of eutectic Si.


Sign in / Sign up

Export Citation Format

Share Document