Emerging 3D printing technologies for drug delivery devices: Current status and future perspective

Author(s):  
Jiawei Wang ◽  
Yu Zhang ◽  
Niloofar Heshmati Aghda ◽  
Amit Raviraj Pillai ◽  
Rishi Thakkar ◽  
...  
Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 105 ◽  
Author(s):  
Sarah Stewart ◽  
Juan Domínguez-Robles ◽  
Victoria McIlorum ◽  
Elena Mancuso ◽  
Dimitrios Lamprou ◽  
...  

Implantable drug delivery devices offer many advantages over other routes of drug delivery. Most significantly, the delivery of lower doses of drug, thus, potentially reducing side-effects and improving patient compliance. Three dimensional (3D) printing is a flexible technique, which has been subject to increasing interest in the past few years, especially in the area of medical devices. The present work focussed on the use of 3D printing as a tool to manufacture implantable drug delivery devices to deliver a range of model compounds (methylene blue, ibuprofen sodium and ibuprofen acid) in two in vitro models. Five implant designs were produced, and the release rate varied, depending on the implant design and the drug properties. Additionally, a rate controlling membrane was produced, which further prolonged the release from the produced implants, signalling the potential use of these devices for chronic conditions.


2017 ◽  
Vol 23 (3) ◽  
pp. 433-439 ◽  
Author(s):  
Jingjunjiao Long ◽  
Hamideh Gholizadeh ◽  
Jun Lu ◽  
Craig Bunt ◽  
Ali Seyfoddin

Three-dimensional (3D) printing is an emerging manufacturing technology for biomedical and pharmaceutical applications. Fused deposition modelling (FDM) is a low cost extrusion-based 3D printing technique that can deposit materials layer-by-layer to create solid geometries. This review article aims to provide an overview of FDM based 3D printing application in developing new drug delivery systems. The principle methodology, suitable polymers and important parameters in FDM technology and its applications in fabrication of personalised tablets and drug delivery devices are discussed in this review. FDM based 3D printing is a novel and versatile manufacturing technique for creating customised drug delivery devices that contain accurate dose of medicine( s) and provide controlled drug released profiles.


2019 ◽  
Vol 555 ◽  
pp. 198-206 ◽  
Author(s):  
Sophia Infanger ◽  
Alexander Haemmerli ◽  
Simona Iliev ◽  
Andrea Baier ◽  
Edmont Stoyanov ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 266 ◽  
Author(s):  
Essyrose Mathew ◽  
Giulia Pitzanti ◽  
Eneko Larrañeta ◽  
Dimitrios A. Lamprou

The process of 3D printing (3DP) was patented in 1986; however, the research in the field of 3DP did not become popular until the last decade. There has been an increasing research into the areas of 3DP for medical applications for fabricating prosthetics, bioprinting and pharmaceutics. This novel method allows the manufacture of dosage forms on demand, with modifications in the geometry and size resulting in changes to the release and dosage behaviour of the product. 3DP will allow wider adoption of personalised medicine due to the diversity and simplicity to change the design and dosage of the products, allowing the devices to be designed specific to the individual with the ability to alternate the drugs added to the product. Personalisation also has the potential to decrease the common side effects associated with generic dosage forms. This Special Issue Editorial outlines the current innovative research surrounding the topic of 3DP, focusing on bioprinting and various types of 3DP on applications for drug delivery as well advantages and future directions in this field of research.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


Sign in / Sign up

Export Citation Format

Share Document