scholarly journals Enhanced NO2 and aerosol extinction observed in the tropospheric column behind lake-breeze fronts using MAX-DOAS

2020 ◽  
Vol 5 ◽  
pp. 100066
Author(s):  
Zoe .Y.W. Davis ◽  
David M.L. Sills ◽  
Robert McLaren
1988 ◽  
Vol 27 (3) ◽  
pp. 269-279 ◽  
Author(s):  
G. S. Kent ◽  
U. O. Farrukh ◽  
P. H. Wang ◽  
A. Deepak

2015 ◽  
Vol 8 (2) ◽  
pp. 941-963 ◽  
Author(s):  
T. Vlemmix ◽  
F. Hendrick ◽  
G. Pinardi ◽  
I. De Smedt ◽  
C. Fayt ◽  
...  

Abstract. A 4-year data set of MAX-DOAS observations in the Beijing area (2008–2012) is analysed with a focus on NO2, HCHO and aerosols. Two very different retrieval methods are applied. Method A describes the tropospheric profile with 13 layers and makes use of the optimal estimation method. Method B uses 2–4 parameters to describe the tropospheric profile and an inversion based on a least-squares fit. For each constituent (NO2, HCHO and aerosols) the retrieval outcomes are compared in terms of tropospheric column densities, surface concentrations and "characteristic profile heights" (i.e. the height below which 75% of the vertically integrated tropospheric column density resides). We find best agreement between the two methods for tropospheric NO2 column densities, with a standard deviation of relative differences below 10%, a correlation of 0.99 and a linear regression with a slope of 1.03. For tropospheric HCHO column densities we find a similar slope, but also a systematic bias of almost 10% which is likely related to differences in profile height. Aerosol optical depths (AODs) retrieved with method B are 20% high compared to method A. They are more in agreement with AERONET measurements, which are on average only 5% lower, however with considerable relative differences (standard deviation ~ 25%). With respect to near-surface volume mixing ratios and aerosol extinction we find considerably larger relative differences: 10 ± 30, −23 ± 28 and −8 ± 33% for aerosols, HCHO and NO2 respectively. The frequency distributions of these near-surface concentrations show however a quite good agreement, and this indicates that near-surface concentrations derived from MAX-DOAS are certainly useful in a climatological sense. A major difference between the two methods is the dynamic range of retrieved characteristic profile heights which is larger for method B than for method A. This effect is most pronounced for HCHO, where retrieved profile shapes with method A are very close to the a priori, and moderate for NO2 and aerosol extinction which on average show quite good agreement for characteristic profile heights below 1.5 km. One of the main advantages of method A is the stability, even under suboptimal conditions (e.g. in the presence of clouds). Method B is generally more unstable and this explains probably a substantial part of the quite large relative differences between the two methods. However, despite a relatively low precision for individual profile retrievals it appears as if seasonally averaged profile heights retrieved with method B are less biased towards a priori assumptions than those retrieved with method A. This gives confidence in the result obtained with method B, namely that aerosol extinction profiles tend on average to be higher than NO2 profiles in spring and summer, whereas they seem on average to be of the same height in winter, a result which is especially relevant in relation to the validation of satellite retrievals.


2000 ◽  
Vol 105 (D22) ◽  
pp. 26907-26915 ◽  
Author(s):  
Theodore L. Anderson ◽  
Sarah J. Masonis ◽  
David S. Covert ◽  
Robert J. Charlson ◽  
Mark J. Rood

2009 ◽  
Vol 9 (22) ◽  
pp. 8825-8840 ◽  
Author(s):  
A. J. McDonald ◽  
S. E. George ◽  
R. M. Woollands

Abstract. A combination of POAM III aerosol extinction and CHAMP RO temperature measurements are used to examine the role of atmospheric gravity waves in the formation of Antarctic Polar Stratospheric Clouds (PSCs). POAM III aerosol extinction observations and quality flag information are used to identify Polar Stratospheric Clouds using an unsupervised clustering algorithm. A PSC proxy, derived by thresholding Met Office temperature analyses with the PSC Type Ia formation temperature (TNAT), shows general agreement with the results of the POAM III analysis. However, in June the POAM III observations of PSC are more abundant than expected from temperature threshold crossings in five out of the eight years examined. In addition, September and October PSC identified using temperature thresholding is often significantly higher than that derived from POAM III; this observation probably being due to dehydration and denitrification. Comparison of the Met Office temperature analyses with corresponding CHAMP observations also suggests a small warm bias in the Met Office data in June. However, this bias cannot fully explain the differences observed. Analysis of CHAMP data indicates that temperature perturbations associated with gravity waves may partially explain the enhanced PSC incidence observed in June (relative to the Met Office analyses). For this month, approximately 40% of the temperature threshold crossings observed using CHAMP RO data are associated with small-scale perturbations. Examination of the distribution of temperatures relative to TNAT shows a large proportion of June data to be close to this threshold, potentially enhancing the importance of gravity wave induced temperature perturbations. Inspection of the longitudinal structure of PSC occurrence in June 2005 also shows that regions of enhancement are geographically associated with the Antarctic Peninsula; a known mountain wave "hotspot". The latitudinal variation of POAM III observations means that we only observe this region in June–July, and thus the true pattern of enhanced PSC production may continue operating into later months. The analysis has shown that early in the Antarctic winter stratospheric background temperatures are close to the TNAT threshold (and PSC formation), and are thus sensitive to temperature perturbations associated with mountain wave activity near the Antarctic peninsula (40% of PSC formation). Later in the season, and at latitudes away from the peninsula, temperature perturbations associated with gravity waves contribute to about 15% of the observed PSC (a value which corresponds well to several previous studies). This lower value is likely to be due to colder background temperatures already achieving the TNAT threshold unaided. Additionally, there is a reduction in the magnitude of gravity waves perturbations observed as POAM III samples poleward of the peninsula.


2017 ◽  
Author(s):  
Jing Li ◽  
Chengcai Li ◽  
Chunsheng Zhao

Abstract. Although the temporal changes of aerosol properties have been widely investigated, the majority focused on the averaged condition without much emphasis on the extremes. However, the latter can be more important in terms of human health and climate change. This study uses a previously validated, quality-controlled visibility dataset to investigate the long-term trends of extreme surface aerosol extinction coefficient (AEC) over China, and compare them with the median trends. Two methods are used to independently evaluate the trends, which arrive at consistent results. The sign of extreme and median trends are generally coherent, whereas their magnitudes show distinct spatial and temporal differences. In the 1980s, an overall positive trend is found throughout China with the extreme trend exceeding the mean trend, except for Northwest China and the North China Plain. In the 1990s, AEC over Northeast and Northwest China starts to decline while the rest of the country still exhibits an increase. The extreme trends continue to dominate in the south while it yields to the mean trend in the north. After year 2000, the extreme trend becomes weaker than the mean trend overall in terms of both the magnitude and significance level. The annual trend can be primarily attributed to winter and fall trends. The results suggest that the decadal changes of pollution in China may be governed by different mechanisms. Synoptic conditions that often result in extreme air quality changes might dominate in the 1980s, whereas emission increase might be the main factor for the 2000s.


2013 ◽  
Vol 13 (6) ◽  
pp. 3345-3361 ◽  
Author(s):  
D. M. Winker ◽  
J. L. Tackett ◽  
B. J. Getzewich ◽  
Z. Liu ◽  
M. A. Vaughan ◽  
...  

Abstract. The CALIOP lidar, carried on the CALIPSO satellite, has been acquiring global atmospheric profiles since June 2006. This dataset now offers the opportunity to characterize the global 3-D distribution of aerosol as well as seasonal and interannual variations, and confront aerosol models with observations in a way that has not been possible before. With that goal in mind, a monthly global gridded dataset of daytime and nighttime aerosol extinction profiles has been constructed, available as a Level 3 aerosol product. Averaged aerosol profiles for cloud-free and all-sky conditions are reported separately. This 6-yr dataset characterizes the global 3-dimensional distribution of tropospheric aerosol. Vertical distributions are seen to vary with season, as both source strengths and transport mechanisms vary. In most regions, clear-sky and all-sky mean aerosol profiles are found to be quite similar, implying a lack of correlation between high semi-transparent cloud and aerosol in the lower troposphere. An initial evaluation of the accuracy of the aerosol extinction profiles is presented. Detection limitations and the representivity of aerosol profiles in the upper troposphere are of particular concern. While results are preliminary, we present evidence that the monthly-mean CALIOP aerosol profiles provide quantitative characterization of elevated aerosol layers in major transport pathways. Aerosol extinction in the free troposphere in clean conditions, where the true aerosol extinction is typically 0.001 km−1 or less, is generally underestimated, however. The work described here forms an initial global 3-D aerosol climatology which we plan to extend and improve over time.


2013 ◽  
Vol 13 (20) ◽  
pp. 10461-10482 ◽  
Author(s):  
J. R. Brook ◽  
P. A. Makar ◽  
D. M. L. Sills ◽  
K. L. Hayden ◽  
R. McLaren

Abstract. This paper serves as an overview and discusses the main findings from the Border Air Quality and Meteorology Study (BAQS-Met) in southwestern Ontario in 2007. This region is dominated by the Great Lakes, shares borders with the United States and consistently experiences the highest ozone (O3) and fine particulate matter concentrations in Canada. The purpose of BAQS-Met was to improve our understanding of how lake-driven meteorology impacts air quality in the region, and to improve models used for forecasting and policy scenarios. Results show that lake breeze occurrence frequencies and inland penetration distances were significantly greater than realized in the past. Due to their effect on local meteorology, the lakes were found to enhance secondary O3 and aerosol formation such that local anthropogenic emissions have their impact closer to the populated source areas than would otherwise occur in the absence of the lakes. Substantial spatial heterogeneity in O3 was observed with local peaks typically 30 ppb above the regional values. Sulfate and secondary organic aerosol (SOA) enhancements were also linked to local emissions being transported in the lake breeze circulations. This study included the first detailed evaluation of regional applications of a high-resolution (2.5 km grid) air quality model in the Great Lakes region. The model showed that maxima in secondary pollutants occur in areas of convergence, in localized updrafts and in distinct pockets over the lake surfaces. These effects are caused by lake circulations interacting with the synoptic flow, with each other or with circulations induced by urban heat islands. Biogenic and anthropogenic emissions were both shown to play a role in the formation of SOA in the region. Detailed particle measurements and multivariate receptor models reveal that while individual particles are internally mixed, they often exist within more complex external mixtures. This makes it difficult to predict aerosol optical properties and further highlights the challenges facing aerosol modelling. The BAQS-Met study has led to a better understanding of the value of high-resolution (2.5 km) modelling for air quality and meteorological predictions and has led to several model improvements.


Sign in / Sign up

Export Citation Format

Share Document