scholarly journals MAX-DOAS observations of aerosols, formaldehyde and nitrogen dioxide in the Beijing area: comparison of two profile retrieval approaches

2015 ◽  
Vol 8 (2) ◽  
pp. 941-963 ◽  
Author(s):  
T. Vlemmix ◽  
F. Hendrick ◽  
G. Pinardi ◽  
I. De Smedt ◽  
C. Fayt ◽  
...  

Abstract. A 4-year data set of MAX-DOAS observations in the Beijing area (2008–2012) is analysed with a focus on NO2, HCHO and aerosols. Two very different retrieval methods are applied. Method A describes the tropospheric profile with 13 layers and makes use of the optimal estimation method. Method B uses 2–4 parameters to describe the tropospheric profile and an inversion based on a least-squares fit. For each constituent (NO2, HCHO and aerosols) the retrieval outcomes are compared in terms of tropospheric column densities, surface concentrations and "characteristic profile heights" (i.e. the height below which 75% of the vertically integrated tropospheric column density resides). We find best agreement between the two methods for tropospheric NO2 column densities, with a standard deviation of relative differences below 10%, a correlation of 0.99 and a linear regression with a slope of 1.03. For tropospheric HCHO column densities we find a similar slope, but also a systematic bias of almost 10% which is likely related to differences in profile height. Aerosol optical depths (AODs) retrieved with method B are 20% high compared to method A. They are more in agreement with AERONET measurements, which are on average only 5% lower, however with considerable relative differences (standard deviation ~ 25%). With respect to near-surface volume mixing ratios and aerosol extinction we find considerably larger relative differences: 10 ± 30, −23 ± 28 and −8 ± 33% for aerosols, HCHO and NO2 respectively. The frequency distributions of these near-surface concentrations show however a quite good agreement, and this indicates that near-surface concentrations derived from MAX-DOAS are certainly useful in a climatological sense. A major difference between the two methods is the dynamic range of retrieved characteristic profile heights which is larger for method B than for method A. This effect is most pronounced for HCHO, where retrieved profile shapes with method A are very close to the a priori, and moderate for NO2 and aerosol extinction which on average show quite good agreement for characteristic profile heights below 1.5 km. One of the main advantages of method A is the stability, even under suboptimal conditions (e.g. in the presence of clouds). Method B is generally more unstable and this explains probably a substantial part of the quite large relative differences between the two methods. However, despite a relatively low precision for individual profile retrievals it appears as if seasonally averaged profile heights retrieved with method B are less biased towards a priori assumptions than those retrieved with method A. This gives confidence in the result obtained with method B, namely that aerosol extinction profiles tend on average to be higher than NO2 profiles in spring and summer, whereas they seem on average to be of the same height in winter, a result which is especially relevant in relation to the validation of satellite retrievals.

2014 ◽  
Vol 7 (9) ◽  
pp. 9673-9731
Author(s):  
T. Vlemmix ◽  
F. Hendrick ◽  
G. Pinardi ◽  
I. De Smedt ◽  
C. Fayt ◽  
...  

Abstract. A four year data set of MAX-DOAS observations in the Beijing area (2008–2012) is analysed with a focus on NO2, HCHO, and aerosols. Two very different retrieval methods are applied. Method A describes the tropospheric profile with 13 layers and makes use of the optimal estimation method. Method B uses 2–4 parameters to describe the tropospheric profile and an inversion based on a least-squares fit. For each constituent (NO2, HCHO and aerosols) the retrieval outcomes are compared in terms of tropospheric columns, surface concentrations, and "characteristic profile heights" (i.e. the height below which 75% of the vertically integrated tropospheric column resides). We find best agreement between the two methods for tropospheric NO2 columns, with a standard deviation of relative differences below 10%, a correlation of 0.99 and a linear regression with a slope of 1.03. For tropospheric HCHO columns we find a similar slope, but also a systematic bias of almost 10% which is likely related to differences in profile height. Aerosol optical depths (AODs) retrieved with method B are 20% high compared to method A. They are more in agreement with AERONET measurements, which are on average only 5% lower, however with considerable relative differences (standard deviation ~25%). With respect to near surface volume mixing ratios and aerosol extinction we find considerably larger relative differences: 10 ± 30%, −23 ± 28% and −8 ± 33% for aerosols, HCHO and NO2 respectively. The frequency distributions of these near-surface concentrations show however a quite good agreement, and this indicates that near-surface concentrations derived from MAX-DOAS are certainly useful in a climatological sense. A major difference between the two methods is the dynamic range of retrieved characteristic profile heights which is larger for method B than for method A. This effect is most pronounced for HCHO, where retrieved profile shapes with method A are very close to the a priori, and moderate for NO2 and aerosols which on average show quite good agreement for characteristic profile heights below 1.5 km. One of the main advantages of method A is the stability, even under suboptimal conditions (e.g., in the presence of clouds). Method B is generally more unstable and this explains probably a substantial part of the quite large relative differences between the two methods. However, despite a relatively low precision for individual profile retrievals it appears as if seasonally averaged profile heights retrieved with method B are less biased towards a priori assumptions than those retrieved with method A. This gives confidence in the result obtained with method B, namely that aerosol profiles tend on average to be higher than NO2 profiles in spring and summer, whereas they seem on average to be of the same height in winter, a result which is especially relevant in relation to the validation of satellite retrievals.


2015 ◽  
Vol 8 (12) ◽  
pp. 5223-5235 ◽  
Author(s):  
C. von Savigny ◽  
F. Ernst ◽  
A. Rozanov ◽  
R. Hommel ◽  
K.-U. Eichmann ◽  
...  

Abstract. Stratospheric aerosol extinction profiles have been retrieved from SCIAMACHY/Envisat measurements of limb-scattered solar radiation. The retrieval is an improved version of an algorithm presented earlier. The retrieved aerosol extinction profiles are compared to co-located aerosol profile measurements from the SAGE II solar occultation instrument at a wavelength of 525 nm. Comparisons were carried out with two versions of the SAGE II data set (version 6.2 and the new version 7.0). In a global average sense the SCIAMACHY and the SAGE II version 7.0 extinction profiles agree to within about 10 % for altitudes above 15 km. Larger relative differences (up to 40 %) are observed at specific latitudes and altitudes. We also find differences between the two SAGE II data versions of up to 40 % for specific latitudes and altitudes, consistent with earlier reports. Sample results on the latitudinal and temporal variability of stratospheric aerosol extinction and optical depth during the SCIAMACHY mission period are presented. The results confirm earlier reports that a series of volcanic eruptions is responsible for the increase in stratospheric aerosol optical depth from 2002 to 2012. Above about an altitude of 28 km, volcanic eruptions are found to have negligible impact in the period 2002–2012.


2018 ◽  
Vol 11 (6) ◽  
pp. 3433-3445 ◽  
Author(s):  
Landon A. Rieger ◽  
Elizaveta P. Malinina ◽  
Alexei V. Rozanov ◽  
John P. Burrows ◽  
Adam E. Bourassa ◽  
...  

Abstract. Limb scatter instruments in the UV–vis spectral range have provided long-term global records of stratospheric aerosol extinction important for climate records and modelling. While comparisons with occultation instruments show generally good agreement, the source and magnitude of the biases arising from retrieval assumptions, approximations in the radiative transfer modelling and inversion techniques have not been thoroughly characterized. This paper explores the biases between SCIAMACHY v1.4, OSIRIS v5.07 and SAGE II v7.00 aerosol extinctions through a series of coincident comparisons as well as simulation and retrieval studies to investigate the cause and magnitude of the various systematic differences. The effect of a priori profiles, particle size assumptions, radiative transfer modelling, inversion techniques and the different satellite datasets are explored. It is found that the assumed a priori profile can have a large effect near the normalization point, as well as systematic influence at lower altitudes. The error due to particle size assumptions is relatively small when averaged over a range of scattering angles, but individual errors depend on the particular scattering angle, particle size and measurement vector definition. Differences due to radiative transfer modelling introduce differences between the retrieved products of less than 10 % on average, but can introduce vertical structure. The combination of the different scenario simulations and the application of both algorithms to both datasets enable the origin of some of the systematic features such as high-altitude differences when compared to SAGE II to be explained.


2015 ◽  
Vol 8 (5) ◽  
pp. 4817-4858
Author(s):  
J. Jia ◽  
A. Rozanov ◽  
A. Ladstätter-Weißenmayer ◽  
J. P. Burrows

Abstract. In this manuscript, the latest SCIAMACHY limb ozone scientific vertical profiles, namely the current V2.9 and the upcoming V3.0, are extensively compared with ozone sonde data from the WOUDC database. The comparisons are made on a global scale from 2003 to 2011, involving 61 sonde stations. The retrieval processors used to generate V2.9 and V3.0 data sets are briefly introduced. The comparisons are discussed in terms of vertical profiles and stratospheric partial columns. Our results indicate that the V2.9 ozone profile data between 20–30 km is in good agreement with ground based measurements with less than 5% relative differences in the latitude range of 90° S–40° N (with exception of the tropical Pacific region where an overestimation of more than 10% is observed), which corresponds to less than 5 DU partial column differences. In the tropics the differences are within 3%. However, this data set shows a significant underestimation northwards of 40° N (up to ~15%). The newly developed V3.0 data set reduces this bias to below 10% while maintaining a good agreement southwards of 40° N with slightly increased relative differences of up to 5% in the tropics.


2018 ◽  
Author(s):  
Landon A. Rieger ◽  
Elizaveta P. Malinina ◽  
Alexei V. Rozanov ◽  
John P. Burrows ◽  
Adam E. Bourassa ◽  
...  

Abstract. Limb scatter instruments in the UV-Vis spectral range have provided longterm global records of stratospheric aerosol extinction important for climate records and modelling. While comparisons with occultation instruments show generally good agreement, the source and magnitude of the biases arising from retrieval assumptions, approximations in the radiative transfer modelling, and inversion techniques has not been thoroughly characterized. This paper explores the biases between SCIAMACHY v1.4, OSIRIS v5.07 and SAGE II v7.00 aerosol extinctions through a series of coincident comparisons as well as simulation and retrieval studies to investigate the cause and magnitude of the various systematic differences. The effect of a priori profiles, particle size assumptions, radiative transfer modelling, inversion techniques, and the different satellite datasets are explored. It is found that the assumed a priori profile can have a large effect near the normalization point, as well as systematic influence at lower altitudes. The error due to particle size assumptions is relatively small when averaged over a range of scattering angles, but individual errors depend on the particular scattering angle, particle size and measurement vector definition. Differences due to radiative transfer modelling introduce differences between the retrieved products of less than 10 % on average, but can introduce vertical structure. The combination of the different scenario simulations and the application of both algorithms to both datasets enable the origin of some of the systematic features such as high altitude differences when compared to SAGE II to be explained.


2010 ◽  
Vol 3 (6) ◽  
pp. 4889-4930
Author(s):  
S. M. Illingworth ◽  
J. J. Remedios ◽  
H. Boesch ◽  
S.-P. Ho ◽  
D. P. Edwards ◽  
...  

Abstract. Observations of atmospheric CO can only be made on global and regional scales by remote sensing instruments situated in space. One such instrument is the Infrared Atmospheric Sounding Interferometer (IASI), producing spectrally resolved, top-of-atmosphere radiance measurements from which CO vertical layers and total columns can be retrieved. This paper presents the first intercomparison between an IASI CO data set, in this case that produced by the University of Leicester IASI Retrieval Scheme (ULIRS), and the V3 and V4 operationally retrieved CO products from the Measurements Of Pollution In The Troposphere (MOPITT) instrument. The comparison is performed for a localised region of Africa. By comparing both the standard data and a special version of MOPITT data retrieved using the ULIRS a priori for CO, it is shown that standard intercomparisons of CO are strongly affected by the differing a priori data of the retrievals, and by the differing sensitivities of the two instruments. In particular, the differing a priori profiles for MOPITT V3 and V4 data result in systematic retrieved profile changes as expected. Application of averaging kernels is used to derive a difference quantity which is much less affected by smoothing error and hence more sensitive to systematic error. This technique is used to show that the systematic bias between MOPITT V4 and ULIRS IASI data, at MOPITT vertical resolution, is less than 7%. These conclusions are confirmed by simulations with model profiles for the same region.


Geophysics ◽  
1985 ◽  
Vol 50 (11) ◽  
pp. 1701-1720 ◽  
Author(s):  
Glyn M. Jones ◽  
D. B. Jovanovich

A new technique is presented for the inversion of head‐wave traveltimes to infer near‐surface structure. Traveltimes computed along intersecting pairs of refracted rays are used to reconstruct the shape of the first refracting horizon beneath the surface and variations in refractor velocity along this boundary. The information derived can be used as the basis for further processing, such as the calculation of near‐surface static delays. One advantage of the method is that the shape of the refractor is determined independently of the refractor velocity. With multifold coverage, rapid lateral changes in refractor geometry or velocity can be mapped. Two examples of the inversion technique are presented: one uses a synthetic data set; the other is drawn from field data shot over a deep graben filled with sediment. The results obtained using the synthetic data validate the method and support the conclusions of an error analysis, in which errors in the refractor velocity determined using receivers to the left and right of the shots are of opposite sign. The true refractor velocity therefore falls between the two sets of estimates. The refraction image obtained by inversion of the set of field data is in good agreement with a constant‐velocity reflection stack and illustrates that the ray inversion method can handle large lateral changes in refractor velocity or relief.


2004 ◽  
Vol 36 (3) ◽  
pp. 1457 ◽  
Author(s):  
A. A. Panou ◽  
C. B. Papazachos ◽  
Ch. Papaioannou ◽  
P. M. Hatzidimitriou

Strong motion recordings of the May 13, 1995 Mw=6.6, earthquake sequence that occurred in the Kozani-Grevena region (Western Macedonia, Greece) have been analyzed for the determination of their source parameters. The data set for this study comes from a temporarily deployed accelerograph network and the source parameters using the shear-wave displacement spectra have been estimated. For this estimation the spectral records have been corrected for the site effects and for the propagation path (geometrical spreading and anelastic attenuation). The magnitude of each event was also re-calculated by estimating appropriate station corrections. The derived relationships arelogMo =(1.43 ±0.09) M, + (16.92 ± 0.29), 2.0 < ML< 5.0 (1)logfc = (-0.56± 0.08) · ML + (2.52 + 0.29), 2.0 < ML< 5.0 (2)logM0 = (-2.20 + 0.08) · log fc + (23.16 ± 0.84), 0.6 < fc < 10.0 (3)The near-surface attenuation parameter κ0 has also been determined for the strong motion stations sites. These values of κ0 are in good agreement with those of Margaris and Boore (1998) for the geological formation on which each station was positioned. The obtained source parameters are in good agreement with those from previous studies for the Aegean region.


Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 538-548 ◽  
Author(s):  
Douglas J. LaBrecque ◽  
Michela Miletto ◽  
William Daily ◽  
Aberlardo Ramirez ◽  
Earle Owen

An Occam’s inversion algorithm for crosshole resistivity data that uses a finite‐element method forward solution is discussed. For the inverse algorithm, the earth is discretized into a series of parameter blocks, each containing one or more elements. The Occam’s inversion finds the smoothest 2-D model for which the Chi‐squared statistic equals an a priori value. Synthetic model data are used to show the effects of noise and noise estimates on the resulting 2-D resistivity images. Resolution of the images decreases with increasing noise. The reconstructions are underdetermined so that at low noise levels the images converge to an asymptotic image, not the true geoelectrical section. If the estimated standard deviation is too low, the algorithm cannot achieve an adequate data fit, the resulting image becomes rough, and irregular artifacts start to appear. When the estimated standard deviation is larger than the correct value, the resolution decreases substantially (the image is too smooth). The same effects are demonstrated for field data from a site near Livermore, California. However, when the correct noise values are known, the Occam’s results are independent of the discretization used. A case history of monitoring at an enhanced oil recovery site is used to illustrate problems in comparing successive images over time from a site where the noise level changes. In this case, changes in image resolution can be misinterpreted as actual geoelectrical changes. One solution to this problem is to perform smoothest, but non‐Occam’s, inversion on later data sets using parameters found from the background data set.


2011 ◽  
Vol 4 (5) ◽  
pp. 775-793 ◽  
Author(s):  
S. M. Illingworth ◽  
J. J. Remedios ◽  
H. Boesch ◽  
S.-P. Ho ◽  
D. P. Edwards ◽  
...  

Abstract. Observations of atmospheric carbon monoxide (CO) can only be made on continental and global scales by remote sensing instruments situated in space. One such instrument is the Infrared Atmospheric Sounding Interferometer (IASI), producing spectrally resolved, top-of-atmosphere radiance measurements from which CO vertical layers and total columns can be retrieved. This paper presents a technique for intercomparisons of satellite data with low vertical resolution. The example in the paper also generates the first intercomparison between an IASI CO data set, in this case that produced by the University of Leicester IASI Retrieval Scheme (ULIRS), and the V3 and V4 operationally retrieved CO products from the Measurements Of Pollution In The Troposphere (MOPITT) instrument. The comparison is performed for a localised region of Africa, primarily for an ocean day-time configuration, in order to develop the technique for instrument intercomparison in a region with well defined a priori. By comparing both the standard data and a special version of MOPITT data retrieved using the ULIRS a priori for CO, it is shown that standard intercomparisons of CO are strongly affected by the differing a priori data of the retrievals, and by the differing sensitivities of the two instruments. In particular, the differing a priori profiles for MOPITT V3 and V4 data result in systematic retrieved profile changes as expected. An application of averaging kernels is used to derive a difference quantity which is much less affected by smoothing error, and hence more sensitive to systematic error. These conclusions are confirmed by simulations with model profiles for the same region. This technique is used to show that for the data that has been processed the systematic bias between MOPITT V4 and ULIRS IASI data, at MOPITT vertical resolution, is less than 7 % for the comparison data set, and on average appears to be less than 4 %. The results of this study indicate that intercomparisons of satellite data sets with low vertical resolution should ideally be performed with: retrievals using a common a priori appropriate to the geographic region studied; the application of averaging kernels to compute difference quantities with reduced a priori influence; and a comparison with simulated differences using model profiles for the target gas in the region.


Sign in / Sign up

Export Citation Format

Share Document