Low power up-conversion mixer with gain control function

2016 ◽  
Vol 70 (8) ◽  
pp. 1071-1075 ◽  
Author(s):  
Jhen-Ji Wang ◽  
Duan-Yu Chen ◽  
San-Fu Wang ◽  
Rong-Shan Wei ◽  
Ching-Yung Hsueh
Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 60
Author(s):  
Eun-Hyuk Lee ◽  
Sang-Hoon Kim ◽  
Kwang-Seok Yun

Haptic displays have been developed to provide operators with rich tactile information using simple structures. In this study, a three-axis tactile actuator capable of thermal display was developed to deliver tactile senses more realistically and intuitively. The proposed haptic display uses pneumatic pressure to provide shear and normal tactile pressure through an inflation of the balloons inherent in the device. The device provides a lateral displacement of ±1.5 mm for shear haptic feedback and a vertical inflation of the balloon of up to 3.7 mm for normal haptic feedback. It is designed to deliver thermal feedback to the operator through the attachment of a heater to the finger stage of the device, in addition to mechanical haptic feedback. A custom-designed control module is employed to generate appropriate haptic feedback by computing signals from sensors or control computers. This control module has a manual gain control function to compensate for the force exerted on the device by the user’s fingers. Experimental results showed that it could improve the positional accuracy and linearity of the device and minimize hysteresis phenomena. The temperature of the device could be controlled by a pulse-width modulation signal from room temperature to 90 °C. Psychophysical experiments show that cognitive accuracy is affected by gain, and temperature is not significantly affected.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Chengying Chen ◽  
Liming Chen ◽  
Jun Yang

A mixed-signal programmable Time-Division Power-On-Reset (TD-POR) circuit based on 8-bit Successive Approximation Analog-to-Digital Converter (SAR ADC) for accurate control in low-power hearing-aid System on Chip (SoC) is presented in this paper. The end-of-converter (EOC) signal of SAR ADC is used as the mode-change signal so that the circuit can detect the battery voltage and volume voltage alternately. And the TD-POR circuit also has brown-out reset (BOR) detection capability. Through digital logic circuit, the POR, BOR threshold, and delay time can be adjusted according to the system requirement. The circuit is implemented in SMIC 0.13 μm 1P8M CMOS process. The measurement results show that, in 1 V power supply, the POR, BOR, and volume control function are accomplished. The detection resolution is the best among previous work. With 120 Hz input signal and 15 kHz clock, the ADC shows that Signal to Noise plus Distortion Ratio (SNDR) is 46.5 dB and Effective Number Of Bits (ENOB) is 7.43 bits. Total circuit power consumption is only 86 μw for low-power application.


1996 ◽  
Vol 32 (20) ◽  
pp. 1912 ◽  
Author(s):  
B. Landousies ◽  
T. Georges ◽  
E. Delevaque ◽  
R. Lebref ◽  
M. Monerie
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document