Small frequency range discrete bandwidth tunable multiband MIMO antenna for radio/LTE/ISM-2.4 GHz band applications

Author(s):  
Boyapati BharathiDevi ◽  
Jayendra Kumar
Author(s):  
M. Saravanan ◽  
R. Kalidoss ◽  
B. Partibane ◽  
K. S. Vishvaksenan

Abstract The design, analysis, fabrication, and testing of a four-port multiple-input multiple-output (MIMO) antenna is reported in this paper for automotive communications. The MIMO antenna is constructed using the basic antenna element exploiting a slot geometry. Two such antennas are developed on the same microwave laminate to develop a two-port MIMO antenna. Two such microwave laminates are interlocked to create the four-port MIMO scheme. The most distinct feature of the proposed architecture is that the inter-port isolation is well-taken care without the need for an external decoupling unit. The four-port MIMO antenna has an overall volume of 32 × 15 × 32 mm3. The prototype MIMO antenna is fabricated and the measurements are carried out to validate the simulation results. The antenna offers ultra-wideband (UWB) characteristics covering the frequency range of 2.8–9.5 GHz. The average boresight gain of the antenna ranges from 3.2 to 5.41 dBi with the peak gain at 8 GHz. The simulated efficiency of the antenna is greater than 73% within the operating bandwidth. The MIMO parameters such as envelope correlation coefficient, diversity gain, and mean effective gain are evaluated and presented. The appropriateness of the proposed antenna for deployment in the shark fin housing of the present-day automobiles is verified using on-car performance estimation.


2015 ◽  
Vol 8 (3) ◽  
pp. 643-650 ◽  
Author(s):  
Alishir Moradikordalivand ◽  
Chee Yen Leow ◽  
Tharek Abd Rahman ◽  
Sepideh Ebrahimi ◽  
Tien Han Chua

In this paper a wideband multi-input multi-output (MIMO) antenna system for WiFi-LTE wireless access point (WAP) application is proposed. The MIMO antenna system consists of two common element microstrip-fed monopole antennas with dual polarization. Physically closed integration of MIMO antenna elements requires a special technique to increase the isolation between the antennas. A novel structure of parasitic element is introduced to improve the isolation between the antennas. The proposed MIMO antenna system is simulated and optimized using CST Microwave Studio. The designed antenna system is fabricated and measured to verify the simulation results. Reflection coefficient of less than −10 dB and isolation more than 15 dB are achieved in the operating frequency range of 2.3–2.9 GHz which covers WiFi 2.4 GHz and LTE 2.6 GHz bands. The proposed system also provides dual polarization with 10 dB polarization diversity gain and envelope correlation coefficient less than 0.15. Each individual antenna has a gain of 5.1 dB and 68% efficiency.


2019 ◽  
Vol 12 (3) ◽  
pp. 259-266 ◽  
Author(s):  
T. Azari-Nasab ◽  
CH. Ghobadi ◽  
B. Azarm ◽  
M. Majidzadeh

AbstractA multi-input multi-output (MIMO) antenna is designed and discussed for multi-band applications. The constituent antennas are composed of four L-shaped elements and a ground plane. When placed beside each other to form a MIMO antenna, a T-bar shaped parasitic structure is also embedded between the antennas on the backside of the substrate to increase the inter-element isolation. The triple-band performance of the antenna is observed at 2.15–2.73 GHz, 3.1–3.9 GHz, and 5.04–6 GHz. The isolation level of more than 20 is seen over the operating frequency range. The fabricated prototype of the MIMO antenna size is very compact (20 × 40 mm), printed on the FR4 substrate. Based on simulation and experimental results, the proposed design is useful for WiMAX and WLAN applications.


2021 ◽  
Vol 20 ◽  
pp. 146-151
Author(s):  
Edgar Alejandro Andrade-Gonzalez ◽  
Juan Carlos Ordoñez-Martínez ◽  
Mario Reyes-Ayala ◽  
José Alfredo Tirado Méndez ◽  
Hilario Terres-Peña

In this article, a compact ultra-wide band (UWB) multiple input multiple output (MIMO) antenna system is showed. This antenna is based on fractal Fibonacci circles and operates over wide frequency range from 2.9 to 14.51 GHz. The dielectric used was Duroid substrate with dielectric constant εr = 2.2 and thickness of substrate 1.27 mm. This UWB MIMO antenna is simulated by HFSS. In order to improve the isolation between the elements of the antenna a parasitic structure is used, getting S12 and very low ECC. Also, the Total Active reflection Coefficient (TARC) was obtained. Proposed antenna can be used for UWB communication applications and its size is 64 × 38mm2


2019 ◽  
Vol 8 (1) ◽  
pp. 158-165
Author(s):  
Ahmed Mohamed Elshirkasi ◽  
Azremi Abdullah Al-Hadi ◽  
Rizwan Khan ◽  
Ping Jack Soh

This paper presents the performance evaluation of 2-port MIMO antenna for LTE-U sub 6 GHz band. The evaluation focuses on the effect of user’s hand in a uniform environment and the analysis were carried out on simulation and measurement data of antenna ports. Results show that the highest performance of the design is on the frequency range from 4.5 GHz to 5.5 GHz, and the ports have low envelope correlation coefficient (ECC) less than 0.16 in both cases of without and with user’s hand. However, the presence of the user’s hand reduces mean effective gain (MEG) of ports and diversity combining gain by more than 1.6 dB compared with no-hand case. The multiplexing efficiency is around 81% and reduced by the presence of the user’s hand to 55%. Despite this reduction; the design shows high spatial multiplexing capability in both cases. The capacity carried by the second transmission eigenmode is about 39% from the total capacity under waterfilling algorithm transmit power allocation.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012010
Author(s):  
E A Ischenko ◽  
Yu G Pasternak ◽  
V A Pendyurin ◽  
S M Fedorov

Abstract The article discusses a planar patch antenna with a metamaterial integrated into the structure, which allows the antenna to function in the upper Wi-Fi 5, 6 frequency range and the Wi-Fi 6E range. For the study, we built graphs of S-parameters, radiation patterns; on the basis of the resulting structure, we formed a MIMO antenna array for which we determined the main characteristics - the envelope correlation coefficient and the multiplexing efficiency


Author(s):  
B Shruthi, Et. al.

A multiple-input-multiple-output lightweight printed ultrawideband antenna among a dimension about 40×50mm2to minimise the coupling between these two antennas, the proposed antenna with a quarter circular radiating patch, with defected ground structure is designed. The antenna developed by MIMO is highly isolated, stronger than -15dB. In the working band, from 2.67GHz to 14GHz. The simulation indicates that the proposed MIMO antenna will balance the complete enhanced band with a broad bandwidth by making use of CST. It operates at 5.83GHz, 8.07GHz, 12.28GHz and bandwidth tends to cover the ultrawideband range. UWB band and high isolation, that assemblesit perfect for any application of wireless modules in the UWB range, in order to minimise coupling. For indoor applications and wireless applications these frequency range is used.


2021 ◽  
Author(s):  
Akanksha Singh ◽  
Arvind Kumar ◽  
Binod Kumar Kanaujia

Abstract A novel compact low profile MIMO antenna is designed and implemented with high isolation for the X band applications. Proposed MIMO geometry is incorporated with two monopoles which are excited by 50 Ω feed line. To enhance the isolation between inter-elements meander line structures are is identically placed. These meander line structures are reducing the mutual coupling up to 26 dB. In the proposed MIMO antenna two elements cover the entire frequency range between 7.4-11.8 GHz for the X band applications. Meander line structure is working as a decoupling network which improves the isolation considerably. The overall size of the MIMO antenna is 25 × 30 × 1 mm3, and it offers inter-element isolation of >26 dB, envelope correlation coefficient is less than 0.2, and directivity gain >9.99 over the resonating frequency range. The proposed MIMO antenna model is fabricated, and measurement results are verified with simulated results. The antenna shows the satisfactory gain of around 4.8 dB in entire frequency range. The antenna shows the satisfactory gain of around 4.5 dB in entire frequency range.


A novel stacked double U, angular ring shaped MIMO antenna is designed using DGS, and a pair of balanced shorting pin is proposed for C, X, and K-band applications. The aim of this design is to enhance the bandwidth by using different techniques in a compact MSA. The proposed antenna is designed on an FR4 substrate with permittivity of 4.4 is used in this design with dimension of 10×10 mm2 with two-microstrip line and one coaxial feed as a feeding mechanism. Two asymmetrical antennas of FR4 substrate are stacked with an air gap of thickness 1.6mm that exhibits a low correlation coefficient; low mutual coupling and refection coefficient is below-25 dB. The antenna is simulated through HFSS software 13.0 version shows Operates at UWB of frequency range 6.17-9.3, 18.1-18.7 GHz with maximum radiation efficiency of 83%.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 194 ◽  
Author(s):  
Habib Ullah ◽  
Saeed Ur Rahman ◽  
Qunsheng Cao ◽  
Ijaz Khan ◽  
Hamid Ullah

This paper presents a compact planar multiple input multiple output (MIMO) antenna for super wide band (SWB) applications. The presented MIMO antenna comprises two identical patches on the same substrate. Dimensions of the MIMO antenna are 0.17λ × 0.20λ × 0.006λ mm3, with respect to the lowest resonance of 1.30 GHz. The SWB antenna was manufactured using F4B substrate having a dielectric constant of 2.65 that provides a percent impedance bandwidth and bandwidth ratio of 187% and 30.76:1, respectively. The mutual coupling between the antenna elements is suppressed by placing a T-shaped corrugated strip in the mid of two antenna elements. The proposed MIMO antenna exhibits maximum diversity gain of 10 dB, low mutual coupling (<−20 dB), low envelope correlation coefficient (ECC < 0.02), efficiency >80%, and low reflection coefficient (<−10 dB) in the SWB frequency range (1.30 GH–40 GHz). The presented antenna is a good candidate for SWB applications. The designed antenna has been experimentally validated, and the simulated results were also verified.


Sign in / Sign up

Export Citation Format

Share Document