scholarly journals A Compact Low-Profile High Isolation MIMO Antenna For X-Band Applications

Author(s):  
Akanksha Singh ◽  
Arvind Kumar ◽  
Binod Kumar Kanaujia

Abstract A novel compact low profile MIMO antenna is designed and implemented with high isolation for the X band applications. Proposed MIMO geometry is incorporated with two monopoles which are excited by 50 Ω feed line. To enhance the isolation between inter-elements meander line structures are is identically placed. These meander line structures are reducing the mutual coupling up to 26 dB. In the proposed MIMO antenna two elements cover the entire frequency range between 7.4-11.8 GHz for the X band applications. Meander line structure is working as a decoupling network which improves the isolation considerably. The overall size of the MIMO antenna is 25 × 30 × 1 mm3, and it offers inter-element isolation of >26 dB, envelope correlation coefficient is less than 0.2, and directivity gain >9.99 over the resonating frequency range. The proposed MIMO antenna model is fabricated, and measurement results are verified with simulated results. The antenna shows the satisfactory gain of around 4.8 dB in entire frequency range. The antenna shows the satisfactory gain of around 4.5 dB in entire frequency range.

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1241
Author(s):  
Emadeldeen Hassan ◽  
Denys Martynenko ◽  
Eddie Wadbro ◽  
Gunter Fischer ◽  
Martin Berggren

This paper proposes novel low-profile differential-fed planar antennas with embedded sharp frequency selectively. The antennas are compact and easy to integrate with differential devices without matching baluns. The antenna design is formulated as a topology optimization problem, where requirements on impedance bandwidth, directivity, and filtering are used as the design objectives. The optimized antennas operate over the frequency band 6.0–8.5 GHz. The antennas have reflection coefficients below −15 dB, cross-polarization levels below −42 dB, a maximum gain of 6.0 ± 0.5 dB, and a uniform directivity over more than 130° beamwidth angle in the frequency band of interest. In addition, the antennas exhibit sharp roll-off between the operational band and frequencies around the 5.8 GHz WiFi band and the 10 GHz X-band. One antenna has been fabricated with a good match between simulation and measurement results.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yanjie Wu ◽  
Yunliang Long

This paper presents a long-term evolution (LTE) 700 MHz band multiple-input-multiple-output (MIMO) antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λat 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz withS11≤−6 dB andS21≤−23 dB.


2019 ◽  
Vol 23 (1) ◽  
pp. 11
Author(s):  
Sanjay Chouhan ◽  
Leeladhar Malviya

Compact antenna, appropriate gain, high efficiency, wide bandwidth, minimum envelope correlation coefficient (ECC), large total active reflection coefficient (TARC) bandwidth, and low specific absorption rate (SAR) are certain conditions set on the present/future generations of wireless communication antennas with the lowest cost of implementation. A compact low profile folded MIMO antenna has been designed using CST tool to cover application at 5.2 GHz. The reported folded MIMO antenna has bandwidth of 600 MHz (5.0-5.6 GHz) and has fractional bandwidth of 11.32 % along with the compact size of 37.5 × 17.0 mm2 . The reported MIMO antenna has ECC of < 10-2. The proposed folded MIMO antenna resonates at 5.2 GHz and has return loss of -44.0 dB. The inter-port isolation in antenna ports is > 11.50 dB in the defined frequency band. The response of TARC shows > 580 MHz of bandwidth with pair of excitation angles at antenna ports. The gain of antenna is > 3.0 dBi in the operating band. The reported radiating geometry makes the design very compact. To check the radiation effect on human body in different positions, the SAR is evaluated for indoor environment.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1559
Author(s):  
Adam R. H. Alhawari ◽  
Tale Saeidi ◽  
Abdulkarem Hussein Mohammed Almawgani ◽  
Ayman Taher Hindi ◽  
Hisham Alghamdi ◽  
...  

A low-profile Multiple Input Multiple Output (MIMO) antenna showing dual polarization, low mutual coupling, and acceptable diversity gain is presented by this paper. The antenna introduces the requirements of fifth generation (5G) and the satellite communications. A horizontally (4.8–31 GHz) and vertically polarized (7.6–37 GHz) modified antipodal Vivaldi antennas are simulated, fabricated, and integrated, and then their characteristics are examined. An ultra-wideband (UWB) at working bandwidths of 3.7–3.85 GHz and 5–40 GHz are achieved. Low mutual coupling of less than −22 dB is achieved after loading the antenna with cross-curves, staircase meander line, and integration of the metamaterial elements. The antennas are designed on a denim textile substrate with = 1.4 and h= 0.5 mm. A conductive textile called ShieldIt is utilized as conductor with conductivity of 1.8 × 104. After optimizing the proposed UWB-MIMO antenna’s characteristics, it is increased to four elements positioned at the four corners of a denim textile substrate to be employed as a UWB-MIMO antenna for handset communications, 5G, Ka and Ku band, and satellite communications (X-band). The proposed eight port UWB-MIMO antenna has a maximum gain of 10.7 dBi, 98% radiation efficiency, less than 0.01 ECC, and acceptable diversity gain. Afterwards, the eight-ports antenna performance is examined on a simulated real voxel hand and chest. Then, it is evaluated and compared on physical hand and chest of body. Evidently, the simulated and measured results show good agreement between them. The proposed UWB-MIMO antenna offers a compact and flexible design, which is suitably wearable for 5G and satellite communications applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yadgar I. Abdulkarim ◽  
Halgurd N. Awl ◽  
Fahmi F. Muhammadsharif ◽  
Muharrem Karaaslan ◽  
Rashad H. Mahmud ◽  
...  

Improvement in the antenna gain is usually achieved at the expense of bandwidth and vice versa. This is where the realization of this enhancement can be made through compromising the antenna profile. In this work, we propose a new design of incorporating periodic metasurface array to enhance the bandwidth and gain while keeping the antenna to a low-profile scheme. The proposed antenna was simulated and fabricated in order to validate the results in the operating frequency range from 10 MHz to 43.5 GHz. Computer simulation technology (CST) microwave studio software was used to design and simulate the proposed antenna, while LPKF prototyping PCB machine was utilized to fabricate the antenna. Results showed that the antenna generated a gain and bandwidth of 14.2 dB and 2.13 GHz, respectively. Following the good agreement between the numerical and measurement results, it is believed that the proposed antenna can be potentially attractive for the application of satellite communications in Ku-band electromagnetic wave.


Circuit World ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 25-31
Author(s):  
Kanchana D. ◽  
Radha Sankararajan ◽  
Sreeja B.S. ◽  
Manikandan E.

Purpose A novel low profile frequency selective surface (FSS) with a band-stop response at 10 GHz is demonstrated. The purpose of this designed FSS structure is to reject the X-band (8-12 GHz) for the application of shielding. The proposed FSS structure having the unit cell dimension of 8 × 8 mm2, the miniaturization of the FSS unit cell in terms of λ0 is 0.266 λ0 × 0.266 λ0, where λ0 is free space wavelength. The designed FSS provides 4 GHz bandwidth with insertion loss of 15 dB. The transverse electric (TE) and transverse magnetic (TM) modes of the proposed design are same because of polarization independent characteristics and hold the angularly stable frequency response for both TE and TM mode polarization. Both the simulation and measurement results are in good agreement to each other. Design/methodology/approach The proposed FSS design contains square-shaped PEC material, which is placed on the substrate and the shape of the circle and rectangle is etched over the PEC material. The PEC material of the patch dimension is 0.0175 mm. The substrate used for the proposed design is FR4 lossy with the thickness of 0.8 mm and permittivity εr = 4.3 having a loss tangent of 0.02. Findings To find a new design and miniaturized FSS structure is discussed. Originality/value 100%


2018 ◽  
Vol 32 (30) ◽  
pp. 1850362
Author(s):  
Lei Han ◽  
Shen Xiao

In this paper, design, fabrication and measurements of a novel single-pole-double-throw three-state RF MEMS switch based on silicon substrate are presented. The RF MEMS switch consists of two UV-shaped beam push–pull thermal actuators which have three states of ON, OFF and Deep-OFF by using current actuation. When the switch is at Deep-OFF state, it can provide a higher isolation. The switch is fabricated by MetalMUMPs process. The measurement results show that, to the proposed single-pole-double-throw RF MEMS switch, when Switch I is at the ON state and Switch II is at the OFF state, the return loss is better than −16 dB, the insertion loss of Port1 and Port2 is less than −0.9 dB and the isolation of Port3 and Port1 is better than −22 dB at the frequency range from 8 GHz to 12 GHz. When Switch I is at the ON state and the actuator of Switch II is pulled back, which is called the Deep-OFF state, the return loss of Port1 is better than −15.5 dB, the insertion loss of Port1 and Port2 is better than −0.8 dB, and the isolation of Port3 and Port1 is better than −23.5 dB can be achieved at the frequency range from 8 GHz to 12 GHz.


Sign in / Sign up

Export Citation Format

Share Document