Exponential response of nitrous oxide (N2O) emissions to increasing nitrogen fertiliser rates in a tropical sugarcane cropping system

2021 ◽  
Vol 313 ◽  
pp. 107376
Author(s):  
Naoya Takeda ◽  
Johannes Friedl ◽  
David Rowlings ◽  
Daniele De Rosa ◽  
Clemens Scheer ◽  
...  
Soil Research ◽  
2016 ◽  
Vol 54 (6) ◽  
pp. 767 ◽  
Author(s):  
Nirmali Bordoloi ◽  
K. K. Baruah ◽  
P. Bhattacharyya

Nitrous oxide is a greenhouse gas with high global warming potential emitted from agricultural sources. The effects of tillage practices and different levels of N fertiliser on seasonal fluxes of N2O were investigated in a field planted with the wheat variety Sonalika. The experiment was conducted during 2012–13 and 2013–14 under conventional tillage (CT) and reduced tillage (RT) farming systems in combination with four different levels of nitrogen fertiliser (i.e. zero nitrogen (F1), 60kgNha–1 (F2), 80kgNha–1 (F3) and 100kgNha–1 (F4)). Both tillage practices and fertiliser significantly (P<0.01) affected seasonal cumulative N2O emissions and wheat yield. However, there was no significant difference in N2O emissions between RTF1 and CTF1 (zero nitrogen). Compared with RT, N2O emission decreased under the CT practice by 2.49%, 10.11%, 7.9% and 27.46% in CTF1, CTF2, CTF3 and CTF4 respectively. Highest and lowest seasonal cumulative fluxes were recorded in RTF4 (N 100kgha–1) and CTF1 (N 0kgha–1) respectively. During the wheat-growing period, nitrogen use efficiency decreased with increasing nitrogen levels and treatment with 60 kg-Nha–1 in the CT practice (CTF2) was found to be effective in increasing nitrogen use efficiency and decreasing yield-scaled N2O emissions.


Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 296 ◽  
Author(s):  
Guangdi D. Li ◽  
Graeme D. Schwenke ◽  
Richard C. Hayes ◽  
Hongtao Xing ◽  
Adam J. Lowrie ◽  
...  

Nitrification and urease inhibitors have been used to reduce nitrous oxide (N2O) emissions and increase nitrogen use efficiency in many agricultural systems. However, their agronomic benefits, such as the improvement of grain yield, is uncertain. A two-year field experiment was conducted to (1) investigate whether the use of 3,4-dimethylpyrazole phosphate (DMPP) or N-(n-butyl) thiophosphoric triamide (NBPT) can reduce N2O emissions and increase grain yield and (2) explore the financial benefit of using DMPP or NBPT in a rain-fed cropping system in south-eastern Australia. The experiment was conducted at Wagga Wagga, New South Wales, Australia with wheat (Triticum aestivum L.) in 2012 and canola (Brassica napus L.) in 2013. Results showed that urea coated with DMPP reduced the cumulative N2O emission by 34% for a wheat crop in 2012 (P < 0.05) and by 62% for a canola crop in 2013 (P < 0.05) compared with normal urea, but urea coated NBPT had no effect on N2O emission for the wheat crop in 2012. Neither nitrification nor urease inhibitors increased crop yields because the low rainfall experienced led to little potential for gross N loss through denitrification, leaching or volatilisation pathways. In such dry years, only government or other financial incentives for N2O mitigation would make the use of DMPP with applied N economically viable.


2013 ◽  
Vol 10 (1) ◽  
pp. 711-737 ◽  
Author(s):  
C. Liu ◽  
K. Wang ◽  
X. Zheng

Abstract. The application of nitrification inhibitors together with ammonium-based fertilizers is proposed as a potent method to decrease nitrous oxide (N2O) emission while promoting yield and nitrogen use efficiency in fertilized agricultural fields. To evaluate the effects of nitrification inhibitors, we conducted year-round measurements of N2O fluxes, yield, aboveground biomass, plant carbon and nitrogen contents, soil inorganic nitrogen and dissolved organic carbon contents and the main environmental factors for urea (U), urea + dicyandiamide (DCD) and urea + 3,4-dimethylpyrazol-phosphate (DMPP) treatments in a wheat-maize rotation field. The cumulative N2O emissions were calculated to be 4.49 ± 0.21, 2.93 ± 0.06 and 2.78 ± 0.16 kg N ha−1 yr−1 for the U, DCD and DMPP treatments, respectively. Therefore, the DCD and DMPP treatments decreased the annual emissions by 35% and 38%, respectively. The variations of soil temperature, moisture and inorganic nitrogen content regulated the seasonal fluctuation of N2O emissions. When the emissions presented clearly temporal variations, year-round and high-frequency measurements should be adopted to estimate annual cumulative emissions and treatment effects. The application of nitrification inhibitors increased the soil inorganic nitrogen and dissolved organic carbon availability and shifted the main soil inorganic nitrogen form from nitrate to ammonium. The annual yield, aboveground biomass and nitrogen uptake by aboveground plants increased by 8.5–9.1%, 8.6–9.7% and 10.9–13.2%, respectively, for the DCD and DMPP treatments compared with the U treatment. The results demonstrate the roles the nitrification inhibitors play in enhancing yield and nitrogen use efficiency and reducing N2O emission from the wheat-maize cropping system.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 544 ◽  
Author(s):  
Clemens Scheer ◽  
David W. Rowlings ◽  
Massimiliano De Antoni Migliorati ◽  
David W. Lester ◽  
Mike J. Bell ◽  
...  

To meet the global food demand in the coming decades, crop yields per unit area must increase. This can only be achieved by a further intensification of existing cropping systems and will require even higher inputs of N fertilisers, which may result in increased losses of nitrous oxide (N2O) from cropped soils. Enhanced efficiency fertilisers (EEFs) have been promoted as a potential strategy to mitigate N2O emissions and improve nitrogen use efficiency (NUE) in cereal cropping systems. However, only limited data are currently available on the use of different EEF products in sub-tropical cereal systems. A field experiment was conducted to investigate the effect of three different EEFs on N2O emissions, NUE and yield in a sub-tropical summer cereal cropping system in Australia. Over an entire year soil N2O fluxes were monitored continuously (3h sampling frequency) with a fully-automated measuring system. The experimental site was fertilised with different nitrogen (N) fertilisers applied at 170kgNha–1, namely conventional urea (Urea), urea with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), polymer-coated urea (PCU), and urea with the nitrification inhibitor nitrapyrin (Nitrapyrin). Nitrous oxide emissions were highly episodic and mainly controlled by heavy rainfall events within two months of planting and fertiliser N application. Annual N2O emissions in the four treatments amounted to 2.31, 0.40, 0.69 and 1.58kgN2O-Nha–1year–1 for Urea, DMPP, PCU and Nitrapyrin treatments, respectively, while unfertilised plots produced an average of 0.16kgN2O-Nha–1year–1. Two of the tested products (DMPP and PCU) were found to be highly effective, decreasing annual N2O losses by 83% and 70%, respectively, but did not affect yield or NUE. This study shows that EEFs have a high potential to decrease N2O emissions from sub-tropical cereal cropping systems. More research is needed to assess if the increased costs of EEFs can be compensated by lower fertiliser application rates and/or yield increases.


SOIL ◽  
2015 ◽  
Vol 1 (2) ◽  
pp. 707-717 ◽  
Author(s):  
R. Hüppi ◽  
R. Felber ◽  
A. Neftel ◽  
J. Six ◽  
J. Leifeld

Abstract. Biochar, a carbon-rich, porous pyrolysis product of organic residues may positively affect plant yield and can, owing to its inherent stability, promote soil carbon sequestration when amended to agricultural soils. Another possible effect of biochar is the reduction in emissions of nitrous oxide (N2O). A number of laboratory incubations have shown significantly reduced N2O emissions from soil when mixed with biochar. Emission measurements under field conditions however are more scarce and show weaker or no reductions, or even increases in N2O emissions. One of the hypothesised mechanisms for reduced N2O emissions from soil is owing to the increase in soil pH following the application of alkaline biochar. To test the effect of biochar on N2O emissions in a temperate maize cropping system, we set up a field trial with a 20t ha−1 biochar treatment, a limestone treatment adjusted to the same pH as the biochar treatment (pH 6.5), and a control treatment without any addition (pH 6.1). An automated static chamber system measured N2O emissions for each replicate plot (n = 3) every 3.6 h over the course of 8 months. The field was conventionally fertilised at a rate of 160 kg N ha−1 in three applications of 40, 80 and 40 kg N ha−1 as ammonium nitrate. Cumulative N2O emissions were 52 % smaller in the biochar compared to the control treatment. However, the effect of the treatments overall was not statistically significant (p = 0.27) because of the large variability in the data set. Limed soils emitted similar mean cumulative amounts of N2O as the control. There is no evidence that reduced N2O emissions with biochar relative to the control is solely caused by a higher soil pH.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Khadim Dawar ◽  
Shah Fahad ◽  
M. M. R. Jahangir ◽  
Iqbal Munir ◽  
Syed Sartaj Alam ◽  
...  

AbstractIn this study, we explored the role of biochar (BC) and/or urease inhibitor (UI) in mitigating ammonia (NH3) and nitrous oxide (N2O) discharge from urea fertilized wheat cultivated fields in Pakistan (34.01°N, 71.71°E). The experiment included five treatments [control, urea (150 kg N ha−1), BC (10 Mg ha−1), urea + BC and urea + BC + UI (1 L ton−1)], which were all repeated four times and were carried out in a randomized complete block design. Urea supplementation along with BC and BC + UI reduced soil NH3 emissions by 27% and 69%, respectively, compared to sole urea application. Nitrous oxide emissions from urea fertilized plots were also reduced by 24% and 53% applying BC and BC + UI, respectively, compared to urea alone. Application of BC with urea improved the grain yield, shoot biomass, and total N uptake of wheat by 13%, 24%, and 12%, respectively, compared to urea alone. Moreover, UI further promoted biomass and grain yield, and N assimilation in wheat by 38%, 22% and 27%, respectively, over sole urea application. In conclusion, application of BC and/or UI can mitigate NH3 and N2O emissions from urea fertilized soil, improve N use efficiency (NUE) and overall crop productivity.


2021 ◽  
Vol 13 (9) ◽  
pp. 4928
Author(s):  
Alicia Vanessa Jeffary ◽  
Osumanu Haruna Ahmed ◽  
Roland Kueh Jui Heng ◽  
Liza Nuriati Lim Kim Choo ◽  
Latifah Omar ◽  
...  

Farming systems on peat soils are novel, considering the complexities of these organic soil. Since peat soils effectively capture greenhouse gases in their natural state, cultivating peat soils with annual or perennial crops such as pineapples necessitates the monitoring of nitrous oxide (N2O) emissions, especially from cultivated peat lands, due to a lack of data on N2O emissions. An on-farm experiment was carried out to determine the movement of N2O in pineapple production on peat soil. Additionally, the experiment was carried out to determine if the peat soil temperature and the N2O emissions were related. The chamber method was used to capture the N2O fluxes daily (for dry and wet seasons) after which gas chromatography was used to determine N2O followed by expressing the emission of this gas in t ha−1 yr−1. The movement of N2O horizontally (832 t N2O ha−1 yr−1) during the dry period was higher than in the wet period (599 t N2O ha−1 yr−1) because of C and N substrate in the peat soil, in addition to the fertilizer used in fertilizing the pineapple plants. The vertical movement of N2O (44 t N2O ha−1 yr−1) was higher in the dry season relative to N2O emission (38 t N2O ha−1 yr−1) during the wet season because of nitrification and denitrification of N fertilizer. The peat soil temperature did not affect the direction (horizontal and vertical) of the N2O emission, suggesting that these factors are not related. Therefore, it can be concluded that N2O movement in peat soils under pineapple cultivation on peat lands occurs horizontally and vertically, regardless of season, and there is a need to ensure minimum tilling of the cultivated peat soils to prevent them from being an N2O source instead of an N2O sink.


2021 ◽  
Vol 259 ◽  
pp. 112351
Author(s):  
Olivia Addington ◽  
Zhao-Cheng Zeng ◽  
Thomas Pongetti ◽  
Run-Lie Shia ◽  
Kevin R. Gurney ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1014
Author(s):  
Liza Nuriati Lim Kim Choo ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Nik Majid ◽  
Zakry Fitri Abd Aziz

Burning pineapple residues on peat soils before pineapple replanting raises concerns on hazards of peat fires. A study was conducted to determine whether ash produced from pineapple residues could be used to minimize carbon dioxide (CO2) and nitrous oxide (N2O) emissions in cultivated tropical peatlands. The effects of pineapple residue ash fertilization on CO2 and N2O emissions from a peat soil grown with pineapple were determined using closed chamber method with the following treatments: (i) 25, 50, 70, and 100% of the suggested rate of pineapple residue ash + NPK fertilizer, (ii) NPK fertilizer, and (iii) peat soil only. Soils treated with pineapple residue ash (25%) decreased CO2 and N2O emissions relative to soils without ash due to adsorption of organic compounds, ammonium, and nitrate ions onto the charged surface of ash through hydrogen bonding. The ability of the ash to maintain higher soil pH during pineapple growth primarily contributed to low CO2 and N2O emissions. Co-application of pineapple residue ash and compound NPK fertilizer also improves soil ammonium and nitrate availability, and fruit quality of pineapples. Compound NPK fertilizers can be amended with pineapple residue ash to minimize CO2 and N2O emissions without reducing peat soil and pineapple productivity.


Sign in / Sign up

Export Citation Format

Share Document