scholarly journals Effect of enhanced efficiency fertilisers on nitrous oxide emissions in a sub-tropical cereal cropping system

Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 544 ◽  
Author(s):  
Clemens Scheer ◽  
David W. Rowlings ◽  
Massimiliano De Antoni Migliorati ◽  
David W. Lester ◽  
Mike J. Bell ◽  
...  

To meet the global food demand in the coming decades, crop yields per unit area must increase. This can only be achieved by a further intensification of existing cropping systems and will require even higher inputs of N fertilisers, which may result in increased losses of nitrous oxide (N2O) from cropped soils. Enhanced efficiency fertilisers (EEFs) have been promoted as a potential strategy to mitigate N2O emissions and improve nitrogen use efficiency (NUE) in cereal cropping systems. However, only limited data are currently available on the use of different EEF products in sub-tropical cereal systems. A field experiment was conducted to investigate the effect of three different EEFs on N2O emissions, NUE and yield in a sub-tropical summer cereal cropping system in Australia. Over an entire year soil N2O fluxes were monitored continuously (3h sampling frequency) with a fully-automated measuring system. The experimental site was fertilised with different nitrogen (N) fertilisers applied at 170kgNha–1, namely conventional urea (Urea), urea with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), polymer-coated urea (PCU), and urea with the nitrification inhibitor nitrapyrin (Nitrapyrin). Nitrous oxide emissions were highly episodic and mainly controlled by heavy rainfall events within two months of planting and fertiliser N application. Annual N2O emissions in the four treatments amounted to 2.31, 0.40, 0.69 and 1.58kgN2O-Nha–1year–1 for Urea, DMPP, PCU and Nitrapyrin treatments, respectively, while unfertilised plots produced an average of 0.16kgN2O-Nha–1year–1. Two of the tested products (DMPP and PCU) were found to be highly effective, decreasing annual N2O losses by 83% and 70%, respectively, but did not affect yield or NUE. This study shows that EEFs have a high potential to decrease N2O emissions from sub-tropical cereal cropping systems. More research is needed to assess if the increased costs of EEFs can be compensated by lower fertiliser application rates and/or yield increases.


Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 296 ◽  
Author(s):  
Guangdi D. Li ◽  
Graeme D. Schwenke ◽  
Richard C. Hayes ◽  
Hongtao Xing ◽  
Adam J. Lowrie ◽  
...  

Nitrification and urease inhibitors have been used to reduce nitrous oxide (N2O) emissions and increase nitrogen use efficiency in many agricultural systems. However, their agronomic benefits, such as the improvement of grain yield, is uncertain. A two-year field experiment was conducted to (1) investigate whether the use of 3,4-dimethylpyrazole phosphate (DMPP) or N-(n-butyl) thiophosphoric triamide (NBPT) can reduce N2O emissions and increase grain yield and (2) explore the financial benefit of using DMPP or NBPT in a rain-fed cropping system in south-eastern Australia. The experiment was conducted at Wagga Wagga, New South Wales, Australia with wheat (Triticum aestivum L.) in 2012 and canola (Brassica napus L.) in 2013. Results showed that urea coated with DMPP reduced the cumulative N2O emission by 34% for a wheat crop in 2012 (P < 0.05) and by 62% for a canola crop in 2013 (P < 0.05) compared with normal urea, but urea coated NBPT had no effect on N2O emission for the wheat crop in 2012. Neither nitrification nor urease inhibitors increased crop yields because the low rainfall experienced led to little potential for gross N loss through denitrification, leaching or volatilisation pathways. In such dry years, only government or other financial incentives for N2O mitigation would make the use of DMPP with applied N economically viable.



Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 552 ◽  
Author(s):  
Massimiliano De Antoni Migliorati ◽  
Mike Bell ◽  
David Lester ◽  
David W. Rowlings ◽  
Clemens Scheer ◽  
...  

The potential for elevated nitrous oxide (N2O) losses is high in subtropical cereal cropping systems in north-east Australia, where the fertiliser nitrogen (N) input is one single application at or before planting. The use of urea coated with the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) has been reported to substantially decrease N2O emissions and increase crop yields in humid, high-intensity rainfall environments. However, it is still uncertain whether this product is similarly effective in contrasting soil types in the cropping region of north-east Australia. In this study the grain yield response of sorghum (Sorghum bicolor L. Moench) to rates of fertiliser N applied as urea or urea coated with DMPP were compared in crops grown on a Vertisol and an Oxisol in southern Queensland. Seasonal N2O emissions were monitored on selected treatments for the duration of the cropping season and the early stages of a subsequent fallow period using a fully automated high-frequency greenhouse gas measuring system. On each soil the tested treatments included an unfertilised control (0kgNha–1) and two fertilised treatments chosen on the basis of delivering at least 90% of seasonal potential grain yield (160 and 120kgNha–1 on the Vertisol and Oxisol respectively) or at a common (suboptimal) rate at each site (80kgNha–1). During this study DMPP had a similar impact at both sites, clearly inhibiting nitrification for up to 8 weeks after fertiliser application. Despite the relatively dry seasonal conditions during most of the monitoring period, DMPP was effective in abating N2O emissions on both soils and on average reduced seasonal N2O emissions by 60% compared with conventional urea at fertiliser N rates equivalent to those producing 90% of site maximum grain yield. The significant abatement of N2O emissions observed with DMPP, however, did not translate into significant yield gains or improvements in agronomic efficiencies of fertiliser N use. These results may be due to the relatively dry growing season conditions before the bulk of crop N acquisition, which limited the exposure of fertiliser N to large losses due to leaching and denitrification.



Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 109
Author(s):  
Mohamed Abdalla ◽  
Xiaotong Song ◽  
Xiaotang Ju ◽  
Pete Smith

Optimizing crop rotations is one of the proposed sustainable management strategies for increasing carbon sequestration. The main aim of this study was to evaluate the DeNitrification-DeComposition (DNDC) model for estimating soil parameters (temperature, moisture and exchangeable NO3− and NH4+), crop yield and nitrous oxide (N2O) emissions for long-term multi-cropping systems in Hebei, China. The model was validated using five years of data of soil parameters, crop yields and N2O emissions. The DNDC model effectively simulated daily soil temperature, cumulative soil nitrogen and crop yields of all crops. It predicted the trends of observed daily N2O emissions and their cumulative values well but overestimated the magnitude of some peaks. However, the model underestimated daily water filled pore space, especially in dry seasons, and had difficulties in correctly estimating daily exchangeable NO3− and NH4+. Both observed and simulated cumulative N2O results showed that optimized and alternative cropping systems used less nitrogen fertiliser, increased grain yield and decreased N2O emissions compared to the conventional cropping system. Our study shows that although the DNDC model (v. 9.5) is not perfect in estimating daily N2O emissions for these long-term multi-cropping systems, it could still be an effective tool for predicting cumulative emissions.



Soil Research ◽  
2017 ◽  
Vol 55 (6) ◽  
pp. 547 ◽  
Author(s):  
Terry J. Rose ◽  
Stephen G. Morris ◽  
Peter Quin ◽  
Lee J. Kearney ◽  
Stephen Kimber ◽  
...  

Although there is growing evidence that the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) can lower soil nitrous oxide (N2O) emissions in temperate environments, there is little evidence of its efficacy in subtropical or tropical environments where temperatures and rainfall intensities are typically higher. We investigated N2O emissions in field-grown aerobic rice in adjacent fields in the 2013–14 and 2014–15 seasons in a subtropical environment. Crops were topdressed with 80 kg nitrogen (N) ha–1 before rainfall, as either urea, urea + DMPP (at 1.6 kg DMPP t–1 urea: ‘urea-DMPP’) or a blend of 50% urea and 50% urea-DMPP in the 2013–14 season, and urea, urea-DMPP or polymer (3 month)-coated urea (PCU) in the 2014–15 season. DMPP-urea significantly (P < 0.05) lowered soil N2O emissions in the 2013–14 season during the peak flux period after N fertiliser application, but had no effect in 2014–15. The mean cumulative N2O emissions over the entire growing period were 190 g N2O-N ha–1 in 2013–14 and 413 g N2O-N ha–1 in 2014–15, with no significant effect of DMPP or PCU. Our results demonstrate that DMPP can lower N2O emissions in subtropical, aerobic rice during peak flux events following N fertiliser application in some seasons, but inherent variability in climate and soil N2O emissions limited the ability to detect significant differences in cumulative N2O flux over the seasonal assessment. A greater understanding of how environmental and soil factors impact the efficacy of DMPP in the subtropics is needed to formulate appropriate guidelines for its use commercially.



2015 ◽  
Vol 66 (7) ◽  
pp. 689 ◽  
Author(s):  
I. Rochester ◽  
C. Wood ◽  
B. Macdonald

Nitrous oxide (N2O) is a potent greenhouse gas, contributing to global warming. Most of the N2O emitted from cropping systems is derived from the soil and is closely related to the use of nitrogen (N) fertiliser. However, several reports have shown that small, yet significant, portions of the N2O flux from cropping systems are emitted from the crop foliage. This research aimed to quantify N2O emissions from the foliage of field-grown cotton (Gossypium hirsutum L.), and included maize (Zea mays L.) and soybean (Glycine max L.) for comparison. We also aimed to identify differences in the timing of N2O emissions from foliage during the day and over an irrigation cycle. Individual plants were isolated from the soil, and the atmosphere surrounding the encapsulated plants was sampled over a 30-min period. Subplots that were previously fertilised with urea at 0, 80, 160, 240 and 320 kg N ha–1 and then sown to cotton were used to measure N2O flux from plants on three occasions. N2O flux from cotton foliage was also measured on five occasions during an 11-day irrigation cycle and at five times throughout one day. N2O flux from foliage accounted for a small but significant portion (13–17%) of the soil–crop N2O flux. N2O flux from foliage varied with plant species, and the time of day the flux was measured. N2O flux from cotton plants was closely related to soil water content. Importantly, the application of N fertiliser was not related to the N2O flux from cotton plants. The most plausible explanation of our results is that a proportion of the N2O that was evolved in the soil was transported through the plant via evapotranspiration, rather than being evolved within the plant. Studies that exclude N2O emissions from crop foliage will significantly underestimate the N2O flux from the system.



Soil Research ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 60
Author(s):  
P. Quin ◽  
N. Swarts ◽  
G. Oliver ◽  
S. Paterson ◽  
J. Friedl ◽  
...  

The application of nitrate (NO3–) fertiliser is important worldwide in providing nitrogen (N) nutrition to perennial fruit trees. There is little information available on N losses to the environment from commercial cherry orchards, in relation to different timings of NO3– application. The emission of nitrous oxide (N2O) gas is an important greenhouse gas loss from NO3– application, being responsible for 6% of anthropogenic global warming and a catalyst for depletion of stratospheric ozone. In a commercial sweet-cherry orchard in southern Tasmania, we applied 373 g NO3–-N m–2 (equivalent to 90 kg NO3–-N ha–1) either pre- or post-harvest, or equally split between the two, to study the resultant N2O emissions. Emissions averaged 8.37 mg N2O-N m–2 day–1 during the pre-harvest period, primarily driven by a heavy rainfall event, and were significantly greater (P &lt; 0.05) than the average 4.88 × 10–1 mg N2O-N m–2 day–1 from post-harvest NO3– application. Discounting the emissions related to the rainfall event, the resultant average 1.88 mg N2O-N m–2 day–1 for the rest of the pre-harvest emissions remained significantly greater (P &lt; 0.05) than those post-harvest. Ongoing studies will help to build on these results and efforts to minimise N2O emissions in perennial tree cropping systems.



Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 770
Author(s):  
Cong Wang ◽  
Barbara Amon ◽  
Karsten Schulz ◽  
Bano Mehdi

Nitrous oxide (N2O) is a long-lived greenhouse gas that contributes to global warming. Emissions of N2O mainly stem from agricultural soils. This review highlights the principal factors from peer-reviewed literature affecting N2O emissions from agricultural soils, by grouping the factors into three categories: environmental, management and measurement. Within these categories, each impact factor is explained in detail and its influence on N2O emissions from the soil is summarized. It is also shown how each impact factor influences other impact factors. Process-based simulation models used for estimating N2O emissions are reviewed regarding their ability to consider the impact factors in simulating N2O. The model strengths and weaknesses in simulating N2O emissions from managed soils are summarized. Finally, three selected process-based simulation models (Daily Century (DAYCENT), DeNitrification-DeComposition (DNDC), and Soil and Water Assessment Tool (SWAT)) are discussed that are widely used to simulate N2O emissions from cropping systems. Their ability to simulate N2O emissions is evaluated by describing the model components that are relevant to N2O processes and their representation in the model.



2016 ◽  
Vol 56 (3) ◽  
pp. 350 ◽  
Author(s):  
J. Luo ◽  
S. Ledgard ◽  
B. Wise ◽  
S. Lindsey

Animal urine deposited on pastoral soils during grazing is recognised as a dominant source of nitrous oxide (N2O) emissions. The nitrification inhibitor, dicyandiamide (DCD), is a potential mitigation technology to control N2O emissions from urine patches on grazed pastures. One delivery option is to include DCD in animal feed so that the DCD is targeted directly in the urine patch when excreted in the animal urine. The hypothesis tested in the present study was that DCD in urine, excreted by cows that were orally administered with DCD, would have the same effect as DCD added to urine after the urine is excreted. The study also aimed to determine the most effective DCD rate for reducing N2O emissions. Fresh dairy cow urine (700 kg N per ha) was applied to a free-draining silt loam pastoral soil in Waikato, New Zealand, in May (late autumn) or July (winter) of 2014, and was mixed with DCD at rates of 0, 10, 30 and 60 kg/ha. In late autumn, there was an equivalent treatment of urine (containing 60 kg DCD per ha) from DCD-treated cows. A static chamber technique was used to determine gaseous N2O emissions. An annual emission factor (EF3; the percentage of applied urine N lost as N2O-N) of 0.23% or 0.21% was found following late-autumn or winter applications of urine without DCD. Late-autumn application of urine containing DCD from oral administration to cows had the same significant reduction effect on N2O emissions as did DCD that was mixed with urine after excretion, at the equivalent DCD application rate of 60 kg/ha. Application of urine with DCD mixed with the urine after excretion at varying DCD rates showed a significant (P < 0.05) linear decrease in both N2O emissions and EF3 values.



2008 ◽  
Vol 48 (2) ◽  
pp. 147 ◽  
Author(s):  
Coby J. Hoogendoorn ◽  
Cecile A. M. de Klein ◽  
Alison J. Rutherford ◽  
Selai Letica ◽  
Brian P. Devantier

Urine deposited by grazing animals represents the largest source of N2O emissions in New Zealand. Sheep-grazed hill pastures are an important component of New Zealand pastoral land, but information on N2O emissions from these areas is limited. The purpose of this study was to investigate the effect of increasing rates of fertiliser nitrogen and of a nitrification inhibitor on N2O emissions from urine patches. The study was carried out in grazed paddock-scale trials at the Ballantrae and Invermay Research Stations, New Zealand. The fertiliser N treatments were 0, 100, 300 and 750 (500 for Invermay) kg N/ha.year. Nitrous oxide measurements were conducted in the spring of 2005 and 2006, following applications of synthetic sheep urine with or without dicyandiamide (DCD) in these four N treatments. In both years and at both sites, N2O emissions increased with N fertiliser application rate in both urine and non-urine affected areas. The addition of DCD to the synthetic urine reduced N2O emissions from the urine affected areas during the measurement period by 60–80% at Ballantrae and by 40% at Invermay. The N2O emission factors for the artificial sheep urine (expressed as N2O-N lost as % of N applied) ranged from 0.01 to 1.06%, with the higher values generally found in the high N fertiliser treatments. The N2O emission factors were generally less than or similar to those from sheep urine applied to flat land pasture.



2018 ◽  
Vol 58 (6) ◽  
pp. 1087 ◽  
Author(s):  
G. N. Ward ◽  
K. B. Kelly ◽  
J. W. Hollier

Nitrous oxide (N2O) from excreta deposited by grazing ruminants is a major source of greenhouse gas emissions in Australia. Experiments to measure N2O emissions from dairy cow dung, urine and pond sludge applied to pasture, and the effectiveness of the nitrification inhibitor nitrapyrin in reducing these emissions, were conducted in south-western Victoria, Australia. In Experiment 1, emissions from urine, with and without nitrapyrin, and from dung were measured. Treatments applied in September 2013 resulted in cumulative emissions (245 days) of 0.60, 5.35, 4.15 and 1.02 kg N2O-nitrogen (N)/ha for the nil, urine (1000 kg N/ha), urine (1000 kg N/ha) + nitrapyrin (1 kg active ingredients/ha), and dung (448 kg N/ha) treatments, respectively, giving emission factors of 0.47% and 0.09% for urine and dung respectively. Nitrapyrin reduced N2O emissions from urine for 35 days, with an overall reduction in emissions of 25%. In Experiment 2, sludge, with and without nitrapyrin, was applied in May 2014, and dung was applied in May, August, November 2014 and January 2015. Cumulative emissions (350 days) were 0.19, 0.49, 0.31 and 0.39 kg N2O-N/ha for the nil, sludge (308 kg N/ha), sludge (308 kg N/ha) + nitrapyrin (1 kg active ingredients/ha), and dung (total 604 kg N/ha) treatments, respectively, giving emission factors of 0.10% and 0.03% for sludge and dung. Nitrapyrin reduced N2O emissions from sludge for 60 days, with an overall reduction in emissions of 59%. A third experiment on two soil types compared emissions from urine and dung, with and without nitrapyrin, applied in different seasons of the year. Emissions were highly seasonal and strongly related to soil water status. Emission factors (90 days) ranged from 0.02% to 0.19% for urine and 0.01% to 0.12% for dung. Nitrapyrin reduced emissions from urine by 0–35% and had little effect on emissions from dung. Overall, the experiments found that nitrapyrin was an effective tool in reducing emissions from urine, dung and sludge applied to pasture, but the magnitude varied across the year, with nitrapyrin being most effective when soils had >70% water-filled pore space when major emissions occurred.



Sign in / Sign up

Export Citation Format

Share Document