Climate warming alters the soil microbial association network and role of keystone taxa in determining wheat quality in the field

2022 ◽  
Vol 326 ◽  
pp. 107817
Author(s):  
Baoliang Tian ◽  
Mengke Zhu ◽  
Yingchun Pei ◽  
Geyao Ran ◽  
Yu Shi ◽  
...  
2020 ◽  
Vol 8 (2) ◽  
pp. 175 ◽  
Author(s):  
Xuerun Liu ◽  
Luoyang Wang ◽  
Nan Jing ◽  
Guoqiang Jiang ◽  
Zheng Liu

Recent advances have revealed the essential role of gut microbiomes in the therapeutic efficiency of immune checkpoint inhibitors (ICIs). Inspired by biostimulation, a method using nutrients to accelerate the growth of soil microorganisms and the recovery of soil microbial consortia, here we propose a bilberry anthocyanin combo containing chitosan and low molecular citrus pectin (LCP), in which LCP–chitosan is used to encapsulate anthocyanins so to enhance its digestive stability and, moreover, modulate the microbiome more favorable for the PD-L1 blockade treatment. Using murine MC38 colon cancer as a model system, we examined the effects of the combo on modulating the gut microbiome and therapeutic efficiency of PD-L1 blockade treatment. It was shown that bilberry anthocyanins enriched the subdominant species, increased both the concentration and the proportion of butyrate in feces and enhanced intratumoral CD8+ T cell infiltrations. The application of the bilberry anthocyanin combo restored the species diversity of gut microbiome decreased by LCP–chitosan and achieved the best control of tumor growth. These preliminary results indicated unprecedented opportunities of probiotics combo in improving the therapeutic efficiency of immune checkpoint inhibitor through manipulating gut microbiome.


2020 ◽  
Vol 150 ◽  
pp. 107951
Author(s):  
Nadine Praeg ◽  
Julia Seeber ◽  
Georg Leitinger ◽  
Erich Tasser ◽  
Christian Newesely ◽  
...  

2020 ◽  
Vol 21 (10) ◽  
pp. 3588
Author(s):  
Yang Jia ◽  
Adel Eltoukhy ◽  
Junhuan Wang ◽  
Xianjun Li ◽  
Thet Su Hlaing ◽  
...  

Bisphenol A (BPA) is a widespread pollutant threatening the ecosystem and human health. An effective BPA degrader YC-JY1 was isolated and identified as Sphingobium sp. The optimal temperature and pH for the degradation of BPA by strain YC-JY1 were 30 °C and 6.5, respectively. The biodegradation pathway was proposed based on the identification of the metabolites. The addition of cytochrome P450 (CYP) inhibitor 1-aminobenzotriazole significantly decreased the degradation of BPA by Sphingobium sp. YC-JY1. Escherichia coli BL21 (DE3) cells harboring pET28a-bisdAB achieved the ability to degrade BPA. The bisdB gene knockout strain YC-JY1ΔbisdB was unable to degrade BPA indicating that P450bisdB was an essential initiator of BPA metabolism in strain YC-JY1. For BPA polluted soil remediation, strain YC-JY1 considerably stimulated biodegradation of BPA associated with the soil microbial community. These results point out that strain YC-JY1 is a promising microbe for BPA removal and possesses great application potential.


2019 ◽  
Vol 46 (7) ◽  
pp. 597 ◽  
Author(s):  
Johanna W.-H. Wong ◽  
Jonathan M. Plett

A major goal in agricultural research is to develop ‘elite’ crops with stronger, resilient root systems. Within this context, breeding practices have focussed on developing plant varieties that are, primarily, able to withstand pathogen attack and, secondarily, able to maximise plant productivity. Although great strides towards breeding disease-tolerant or -resistant root stocks have been made, this has come at a cost. Emerging studies in certain crop species suggest that domestication of crops, together with soil management practices aimed at improving plant yield, may hinder beneficial soil microbial association or reduce microbial diversity in soil. To achieve more sustainable management of agricultural lands, we must not only shift our soil management practices but also our breeding strategy to include contributions from beneficial microbes. For this latter point, we need to advance our understanding of how plants communicate with, and are able to differentiate between, microbes of different lifestyles. Here, we present a review of the key findings on belowground plant–microbial interactions that have been made over the past decade, with a specific focus on how plants and microbes communicate. We also discuss the currently unresolved questions in this area, and propose plausible ways to use currently available research and integrate fast-emerging ‘-omics’ technologies to tackle these questions. Combining past and developing research will enable the development of new crop varieties that will have new, value-added phenotypes belowground.


2019 ◽  
Vol 23 (3) ◽  
pp. 1533-1551 ◽  
Author(s):  
Tom Shatwell ◽  
Wim Thiery ◽  
Georgiy Kirillin

Abstract. The physical response of lakes to climate warming is regionally variable and highly dependent on individual lake characteristics, making generalizations about their development difficult. To qualify the role of individual lake characteristics in their response to regionally homogeneous warming, we simulated temperature, ice cover, and mixing in four intensively studied German lakes of varying morphology and mixing regime with a one-dimensional lake model. We forced the model with an ensemble of 12 climate projections (RCP4.5) up to 2100. The lakes were projected to warm at 0.10–0.11 ∘C decade−1, which is 75 %–90 % of the projected air temperature trend. In simulations, surface temperatures increased strongly in winter and spring, but little or not at all in summer and autumn. Mean bottom temperatures were projected to increase in all lakes, with steeper trends in winter and in shallower lakes. Modelled ice thaw and summer stratification advanced by 1.5–2.2 and 1.4–1.8 days decade−1 respectively, whereas autumn turnover and winter freeze timing was less sensitive. The projected summer mixed-layer depth was unaffected by warming but sensitive to changes in water transparency. By mid-century, the frequency of ice and stratification-free winters was projected to increase by about 20 %, making ice cover rare and shifting the two deeper dimictic lakes to a predominantly monomictic regime. The polymictic lake was unlikely to become dimictic by the end of the century. A sensitivity analysis predicted that decreasing transparency would dampen the effect of warming on mean temperature but amplify its effect on stratification. However, this interaction was only predicted to occur in clear lakes, and not in the study lakes at their historical transparency. Not only lake morphology, but also mixing regime determines how heat is stored and ultimately how lakes respond to climate warming. Seasonal differences in climate warming rates are thus important and require more attention.


Sign in / Sign up

Export Citation Format

Share Document