scholarly journals Effects of in-situ and reanalysis climate data on estimation of cropland gross primary production using the Vegetation Photosynthesis Model

2015 ◽  
Vol 213 ◽  
pp. 240-250 ◽  
Author(s):  
Cui Jin ◽  
Xiangming Xiao ◽  
Pradeep Wagle ◽  
Timothy Griffis ◽  
Jinwei Dong ◽  
...  
2020 ◽  
Author(s):  
Jiawen Zhu ◽  
Minghua Zhang ◽  
Yao Zhang ◽  
Xiaodong Zeng ◽  
Xiangming Xiao

<p>The Gross Primary Production (GPP) in tropical terrestrial ecosystems plays a critical role in the global carbon cycle and climate change. The strong 2015–2016 El Niño event offers a unique opportunity to investigate how GPP in the tropical terrestrial ecosystems responds to climatic forcing. This study uses two GPP products and concurrent climate data to investigate the GPP anomalies and their underlying causes. We find that both GPP products show an enhanced GPP in 2015 for the tropical terrestrial ecosystem as a whole relative to the multi-year mean of 2001–2015, and this enhancement is the net result of GPP increase in tropical forests and decrease in non-forests. We show that the increased GPP in tropical forests during the El Nino event is consistent with increased photosynthesis active radiation as a result of a reduction in clouds, while the decreased GPP in non-forests is consistent with increased water stress as a result of a reduction of precipitation and an increase of temperature. These results reveal the strong coupling of ecosystem and climate that is different in forest and non-forest ecosystems, and provide a test case for carbon cycle parameterization and carbon-climate feedback simulation in models.</p>


2019 ◽  
Vol 11 (21) ◽  
pp. 2563 ◽  
Author(s):  
Li ◽  
Xiao

Accurately quantifying gross primary production (GPP) globally is critical for assessing plant productivity, carbon balance, and carbon-climate feedbacks, while current GPP estimates exhibit substantial uncertainty. Solar-induced chlorophyll fluorescence (SIF) observed by the Orbiting Carbon Observatory-2 (OCO-2) has offered unprecedented opportunities for monitoring land photosynthesis, while its sparse coverage remains a bottleneck for mapping finer-resolution GPP globally. Here, we used the global, OCO-2-based SIF product (GOSIF) and linear relationships between SIF and GPP to map GPP globally at a 0.05° spatial resolution and 8-day time step for the period from 2000 to 2017. To account for the uncertainty of GPP estimates resulting from the SIF-GPP relationship, we used a total of eight SIF-GPP relationships with different forms (universal and biome-specific, with and without intercept) at both site and grid cell levels to estimate GPP. Our results showed that all of the eight SIF-GPP relationships performed well in estimating GPP globally. The ensemble mean 8-day GPP was generally highly correlated with flux tower GPP for 91 eddy covariance flux sites across the globe (R2 = 0.74, Root Mean Square Error = 1.92 g C m−2 d−1). Our fine-resolution GPP estimates showed reasonable spatial and seasonal variations across the globe and fully captured both seasonal cycles and spatial patterns present in our coarse-resolution (1°) GPP estimates based on coarse-resolution SIF data directly aggregated from discrete OCO-2 soundings. SIF-GPP relationships with different forms could lead to significant differences in annual GPP particularly in the tropics. Our ensemble global annual GPP estimate (135.5 ± 8.8 Pg C yr−1) is between the median estimate of non-process based methods and the median estimate of process-based models. Our GPP estimates showed interannual variability in many regions and exhibited increasing trends in many parts of the globe particularly in the Northern Hemisphere. With the availability of high-quality, gridded SIF observations from space (e.g., TROPOMI, FLEX), our novel approach does not rely on any other input data (e.g., climate data, soil properties) and therefore can map GPP solely based on satellite SIF observations and potentially lead to more accurate GPP estimates at regional to global scales. The use of a universal SIF-GPP relationship versus biome-specific relationships can also avoid the uncertainty associated with land cover maps. Our novel, independent GPP product (GOSIF GPP), freely available at our data repository, will be valuable for studying photosynthesis, carbon cycle, agricultural production, and ecosystem responses to climate change and disturbances, informing ecosystem management, and benchmarking terrestrial biosphere and Earth system models.


Author(s):  
Chaoyang Wu ◽  
Xiuzhen Han ◽  
Jinsheng Ni ◽  
Zheng Niu ◽  
Wenjiang Huang

1976 ◽  
Vol 33 (12) ◽  
pp. 2740-2746 ◽  
Author(s):  
Alan W. Maki ◽  
Howard E. Johnson

The effects of a toxicant, the lampricide TFM (3-trifluoromethyl-4-nitrophenol), on the metabolism of benthic communities were studied in a series of six indoor model streams resembling typical woodland streams. Each artificially illuminated stream consisted of a 4-m pool section and a 4-m riffle section.A specially developed in situ stream respirometer was used for measurements of net primary production and community respiration in pool and riffle communities. Pretreatment levels of gross primary production ranged during summer, fall, and early winter from 10.7 to 79.0 mg O2∙m−2∙h−1 and were suppressed by 25–50% during exposure to 9.0 mg/liter TFM. Community respiration ranged from 10.5 to 36.2 mg O2∙m−2∙h−1 during the same time period and was increased 3–50% by the 9.0 mg/liter lampricide treatment. Calculated photosynthesis to respiration (P:R) ratios proved to be sensitive indicators of the influence of the toxicant. The stream communities demonstrated a capacity to adjust to the toxicant influence as evidenced by the rapid return of metabolic rates to pretreatment levels following the exposure period.


2020 ◽  
Vol 656 ◽  
pp. 95-107 ◽  
Author(s):  
F Bordeyne ◽  
A Migné ◽  
M Plus ◽  
D Davoult

Intertidal communities dominated by canopy-forming brown algae (Phaeophyceae) usually prove to be highly productive systems, based on short-term measurements. However, long-term metabolism (primary production and respiration) is sensitive to several factors acting on different time scales (e.g. tidal cycle, seasonality), making its assessment challenging. Here, we used mathematical modelling to investigate the metabolism of a Fucus serratus-dominated community on daily and annual time scales. This widespread community, which is usually characteristic of the low mid-intertidal level of temperate rocky shores, is submerged for approximately 83% of the time at our study site (Brittany, France). The model incorporated a large spectrum of physiological (e.g. estimates of primary production versus irradiance parameters) and environmental (e.g. temperature, incident irradiance, depth of the water column) parameters measured in situ. The model simulation predicted that net community primary production (NCP) peaks at 8.0 gC m-2 d-1 in late spring, when environmental conditions are most favorable. In contrast, during fall and winter, respiration frequently overcomes primary production, making the system heterotrophic on a daily basis. For the year as a whole, simulation predicted that the community acts as an autotrophic system, with its annual gross primary production amounting to ca. 1301 gC m-2 and annual respiration to ca. 899 gC m-2. According to this simulation, the annual NCP of our intertidal F. serratus community therefore reached 402 gC m-2, which is comparable to subtidal communities dominated by canopy-forming brown algae. Although the F. serratus community lives mostly underwater, it was particularly autotrophic during aerial exposures.


Sign in / Sign up

Export Citation Format

Share Document